Impact of Artificial Intelligence on Colonoscopy Surveillance After Polyp Removal: A Pooled Analysis of Randomized Trials

被引:18
|
作者
Mori, Yuichi [1 ,2 ,3 ]
Wang, Pu [4 ]
Loberg, Magnus [1 ,2 ]
Misawa, Masashi [3 ]
Repici, Alessandro [5 ,6 ]
Spadaccini, Marco [5 ]
Correale, Loredana [5 ]
Antonelli, Giulio [7 ,8 ]
Yu, Honggang [9 ,10 ,11 ]
Gong, Dexin [9 ,10 ,11 ]
Ishiyama, Misaki [3 ]
Kudo, Shin-ei [3 ]
Kamba, Shunsuke [12 ]
Sumiyama, Kazuki [12 ]
Saito, Yutaka [13 ]
Nishino, Haruo [14 ]
Liu, Peixi [4 ]
Brown, Jeremy R. Glissen [15 ]
Mansour, Nabil M. [16 ]
Gross, Seth A. [17 ]
Kalager, Mette [1 ,2 ]
Bretthauer, Michael [1 ,2 ]
Rex, Douglas K. [18 ]
Sharma, Prateek [19 ,20 ]
Berzin, Tyler M. [21 ,22 ]
Hassan, Cesare [5 ,6 ]
机构
[1] Univ Oslo, Clin Effectiveness Res Grp, Oslo, Norway
[2] Oslo Univ Hosp, Dept Transplantat Med, Oslo, Norway
[3] Showa Univ, Digest Dis Ctr, Northern Yokohama Hosp, Yokohama, Japan
[4] Sichuan Acad Med Sci & Sichuan Prov Peoples Hosp, Dept Gastroenterol, Chengdu, Sichuan, Peoples R China
[5] Humanitas Clin & Res Ctr IRCCS, Endoscopy Unit, Rozzano, Italy
[6] Humanitas Univ, Dept Biomed Sci, Pieve Emanuele, Italy
[7] Osped Castelli Hosp, Gastroenterol & Digest Endoscopy Unit, Ariccia, Rome, Italy
[8] Sapienza Univ Rome, Dept Anat Histol Forens Med & Orthoped Sci, Rome, Italy
[9] Wuhan Univ, Dept Gastroenterol, Renmin Hosp, Wuhan, Peoples R China
[10] Wuhan Univ, Key Lab Hubei Prov Digest Syst Dis, Renmin Hosp, Wuhan, Peoples R China
[11] Wuhan Univ, Hubei Prov Clin Res Ctr Digest Dis Minimally Inva, Renmin Hosp, Wuhan, Peoples R China
[12] Jikei Univ, Dept Endoscopy, Sch Med, Tokyo, Japan
[13] Natl Canc Ctr, Endoscopy Div, Tokyo, Japan
[14] Matsushima Hosp, Coloproctol Ctr, Yokohama, Japan
[15] Duke Univ, Div Gastroenterol, Med Ctr, Durham, NC USA
[16] Baylor Coll Med, Sect Gastroenterol & Hepatol, Houston, TX USA
[17] NYU, Div Gastroenterol & Hepatol, Langone Hlth, New York, NY USA
[18] Indiana Univ Sch Med, Div Gastroenterol Hepatol, Indianapolis, IN USA
[19] Kansas City VA Med Ctr, Dept Gastroenterol & Hepatol, Kansas City, KS USA
[20] Univ Kansas, Sch Med, Kansas City, KS USA
[21] Beth Israel Deaconess Med Ctr, Ctr Adv Endoscopy, Boston, MA USA
[22] Harvard Med Sch, Boston, MA USA
基金
日本学术振兴会;
关键词
Computer-Aided Diagnosis; Surveillance Interval; Machine Learning; COLORECTAL ADENOMAS; SYSTEM;
D O I
10.1016/j.cgh.2022.08.022
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
BACKGROUND AND AIMS: Artificial intelligence (AI) tools aimed at improving polyp detection have been shown to in-crease the adenoma detection rate during colonoscopy. However, it is unknown how increased polyp detection rates by AI affect the burden of patient surveillance after polyp removal. METHODS: We conducted a pooled analysis of 9 randomized controlled trials (5 in China, 2 in Italy, 1 in Japan, and 1 in the United States) comparing colonoscopy with or without AI detection aids. The primary outcome was the proportion of patients recommended to undergo intensive surveil-lance (ie, 3-year interval). We analyzed intervals for AI and non-AI colonoscopies for the U.S. and European recommendations separately. We estimated proportions by calculating relative risks using the Mantel-Haenszel method. RESULTS: A total of 5796 patients (51% male, mean 53 years of age) were included; 2894 underwent AI -assisted colonoscopy and 2902 non-AI colonoscopy. When following U.S. guidelines, the pro-portion of patients recommended intensive surveillance increased from 8.4% (95% CI, 7.4%- 9.5%) in the non-AI group to 11.3% (95% CI, 10.2%-12.6%) in the AI group (absolute differ-ence, 2.9% [95% CI, 1.4%-4.4%]; risk ratio, 1.35 [95% CI, 1.16-1.57]). When following Euro-pean guidelines, it increased from 6.1% (95% CI, 5.3%-7.0%) to 7.4% (95% CI, 6.5%-8.4%) (absolute difference, 1.3% [95% CI, 0.01%-2.6%]; risk ratio, 1.22 [95% CI, 1.01-1.47]). CONCLUSIONS: The use of AI during colonoscopy increased the proportion of patients requiring intensive co-lonoscopy surveillance by approximately 35% in the United States and 20% in Europe (absolute increases of 2.9% and 1.3%, respectively). While this may contribute to improved cancer prevention, it significantly adds patient burden and healthcare costs.
引用
收藏
页码:949 / +
页数:13
相关论文
共 50 条
  • [41] Race and gender differences in surveillance participation after polyp detection on initial colonoscopy
    Penn, D. Eli
    Garrow, Donald A.
    Romagnuolo, Joseph
    GASTROINTESTINAL ENDOSCOPY, 2008, 67 (05) : AB239 - AB239
  • [42] Understanding the discrepancy in the effectiveness of artificial intelligence-assisted colonoscopy: from randomized controlled trials to clinical reality
    Bae, Jung Ho
    CLINICAL ENDOSCOPY, 2024, 57 (06) : 765 - 767
  • [43] Colonoscopy surveillance of colorectal polyp recurrence in two years after the first polypectomy
    Zhong, Qinglian
    Sha, Weihong
    Zhang, Anye
    Huang, Jian
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2016, 9 (10): : 20056 - 20061
  • [44] Artificial intelligence and colonoscopy experience: lessons from two randomised trials
    Repici, Alessandro
    Spadaccini, Marco
    Antonelli, Giulio
    Correale, Loredana
    Maselli, Roberta
    Galtieri, Piera Alessia
    Pellegatta, Gaia
    Capogreco, Antonio
    Milluzzo, Sebastian Manuel
    Lollo, Gianluca
    Di Paolo, Dhanai
    Badalamenti, Matteo
    Ferrara, Elisa
    Fugazza, Alessandro
    Carrara, Silvia
    Anderloni, Andrea
    Rondonotti, Emanuele
    Amato, Arnaldo
    De Gottardi, Andrea
    Spada, Cristiano
    Radaelli, Franco
    Savevski, Victor
    Wallace, Michael B.
    Sharma, Prateek
    Roesch, Thomas
    Hassan, Cesare
    GUT, 2022, 71 (04) : 757 - 765
  • [45] Artificial intelligence and polyp detection in colonoscopy: Use of a single neural network to achieve rapid polyp localization for clinical use
    Li, James Weiquan
    Chia, Tiongsun
    Fock, Kwong Ming
    Chong, Kenny De Wei
    Wong, Yu Jun
    Ang, Tiing Leong
    JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, 2021, 36 (12) : 3298 - 3307
  • [46] THE STUDY ON ARTIFICIAL INTELLIGENCE (AI) COLONOSCOPY IN AFFECTING THE RATE OF POLYP DETECTION IN COLONOSCOPY - A SINGLE-CENTER RETROSPECTIVE STUDY
    Wong, Yuen Ting
    Wong, Ka Fai
    GUT, 2021, 70 : A101 - A102
  • [47] Cost savings in colonoscopy with artificial intelligence-aided polyp diagnosis: an add-on analysis of a clinical trial (with video)
    Mori, Yuichi
    Kudo, Shin-ei
    East, James E.
    Rastogi, Amit
    Bretouer, Michael
    Misawa, Masashi
    Sekiguchi, Masau
    Matsuda, Takahisa
    Saito, Yutaka
    Ikematsu, Hiroaki
    Hotta, Kinichi
    Ohtsuka, Kazuo
    Kudo, Toyoki
    Mori, Kensaku
    GASTROINTESTINAL ENDOSCOPY, 2020, 92 (04) : 905 - +
  • [48] ARTIFICIAL INTELLIGENCE (AI) BASED REAL-TIME AUTOMATIC POLYP CHARACTERIZATION DURING COLONOSCOPY
    Benson, Ariel
    Jacob, Harold
    Katz, Lior H.
    Shirin, Haim
    Hazzan, Rawi
    Kahloon, Arslan
    Siersema, Peter D.
    Neumann, Helmut
    Landsman, Marc J.
    Berzin, Tyler M.
    Ngamruengphong, Saowanee
    GASTROINTESTINAL ENDOSCOPY, 2022, 95 (06) : AB248 - AB249
  • [49] Impact of Artificial Intelligence Enhanced Colonoscopy in a Clinical Practice Setting
    Alahmad, Maryam
    Ghoris, Youstina A.
    Ball, Colleen T.
    Atieh, Mutaz I.
    Abualkas, Heba
    Nagaraju, Darshan
    Karajeh, Mohammed
    Wallace, Michael B.
    AMERICAN JOURNAL OF GASTROENTEROLOGY, 2023, 118 (10): : S266 - S267
  • [50] Implementation of Artificial Intelligence Device for Polyp Detection During Colonoscopy at an Academic County Hospital System
    Xu, Anthony
    Catania, Vanessa V.
    Nguyen, Thien-Bao P.
    Kastuar, Shivani
    Ho, Loan
    Sparkman, Jordan
    Sealock, Robert J.
    AMERICAN JOURNAL OF GASTROENTEROLOGY, 2023, 118 (10): : S220 - S221