A Note on LP-Kenmotsu Manifolds Admitting Conformal Ricci-Yamabe Solitons

被引:1
|
作者
Ahmad, Mobin [1 ]
Gazala, Maha Atif [1 ]
Al-Shabrawi, Maha Atif [2 ]
机构
[1] Integral Univ, Dept Math & Stat, Kursi Rd, Lucknow 226026, India
[2] Umm Ul Qura Univ, Dept Math Sci, Mecca, Saudi Arabia
关键词
Lorentzian para-Kenmotsu manifolds; conformal Ricci-Yamabe solitons; Einstein manifolds; -Einstein manifolds;
D O I
10.28924/2291-8639-21-2023-32
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the current note, we study Lorentzian para-Kenmotsu (in brief, LP-Kenmotsu) manifolds admitting conformal Ricci-Yamabe solitons (CRYS) and gradient conformal Ricci-Yamabe soliton (gra-dient CRYS). At last by constructing a 5-dimensional non-trivial example we illustrate our result.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Riemannian manifolds in three dimensions and ∗- η-Ricci-Yamabe solitons
    Nagaraja, H. G.
    Pavithra, R. C.
    Sangeetha, M.
    ADVANCED STUDIES-EURO-TBILISI MATHEMATICAL JOURNAL, 2024, 17 (04): : 181 - 193
  • [22] Riemannian 3-manifolds and Ricci-Yamabe solitons
    Haseeb, Abdul
    Chaubey, Sudhakar K.
    Khan, Meraj Ali
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (01)
  • [23] GENERALIZED ?-RICCI SOLITONS ON LP-KENMOTSU MANIFOLDS ASSOCIATED TO THE SCHOUTEN-VAN KAMPEN CONNECTION
    Azami, Shahroud
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2023, 85 (01): : 53 - 64
  • [24] Curvature properties of α-cosymplectic manifolds with ∗-η-Ricci-Yamabe solitons
    Vandana
    Budhiraja, Rajeev
    Diop, Aliya Naaz Siddiqui
    CUBO-A MATHEMATICAL JOURNAL, 2024, 26 (01): : 91 - 105
  • [25] Gradient Ricci-Yamabe solitons on warped product manifolds
    Karaca, Fatma
    FILOMAT, 2023, 37 (07) : 2199 - 2207
  • [26] GENERALIZED η-RICCI SOLITONS ON LP-KENMOTSU MANIFOLDS ASSOCIATED TO THE SCHOUTEN-VAN KAMPEN CONNECTION
    Azami, Shahroud
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2023, 85 (01): : 53 - 64
  • [27] η-RICCI SOLITONS ON KENMOTSU MANIFOLDS ADMITTING GENERAL CONNECTION
    Biswas, Ashis
    Das, Ashoke
    Baishya, Kanak Kanti
    Bakshi, Manoj Ray
    KOREAN JOURNAL OF MATHEMATICS, 2020, 28 (04): : 803 - 817
  • [28] Conformal η-Ricci almost solitons of Kenmotsu manifolds
    Dey, Santu
    Uddin, Siraj
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2022, 19 (08)
  • [29] SASAKIAN 3-MANIFOLDS ADMITTING A GRADIENT RICCI-YAMABE SOLITON
    Dey, Dibakar
    KOREAN JOURNAL OF MATHEMATICS, 2021, 29 (03): : 547 - 554
  • [30] Ricci-Yamabe solitons and 3-dimensional Riemannian manifolds
    De, Uday Chand
    Sardar, Arpan
    De, Krishnendu
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (03) : 1078 - 1088