Neural representations of the perception of handwritten digits and visual objects from a convolutional neural network compared to humans

被引:1
|
作者
Lee, Juhyeon [1 ]
Jung, Minyoung [1 ]
Lustig, Niv [1 ]
Lee, Jong-Hwan [1 ,2 ]
机构
[1] Korea Univ, Dept Brain & Cognit Engn, Seoul, South Korea
[2] Korea Univ, Dept Brain & Cognit Engn, Anam ro 145, Seoul 02841, South Korea
基金
新加坡国家研究基金会;
关键词
convolutional neural network; functional magnetic resonance imaging; handwritten digits; representational similarity analysis; visual objects; visual perception; NUMBER FORM AREA; BRAIN; FMRI; SELECTIVITY; GRADIENT; COMPLEX; MOTION; CODE;
D O I
10.1002/hbm.26189
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We investigated neural representations for visual perception of 10 handwritten digits and six visual objects from a convolutional neural network (CNN) and humans using functional magnetic resonance imaging (fMRI). Once our CNN model was fine-tuned using a pre-trained VGG16 model to recognize the visual stimuli from the digit and object categories, representational similarity analysis (RSA) was conducted using neural activations from fMRI and feature representations from the CNN model across all 16 classes. The encoded neural representation of the CNN model exhibited the hierarchical topography mapping of the human visual system. The feature representations in the lower convolutional (Conv) layers showed greater similarity with the neural representations in the early visual areas and parietal cortices, including the posterior cingulate cortex. The feature representations in the higher Conv layers were encoded in the higher-order visual areas, including the ventral/medial/dorsal stream and middle temporal complex. The neural representations in the classification layers were observed mainly in the ventral stream visual cortex (including the inferior temporal cortex), superior parietal cortex, and prefrontal cortex. There was a surprising similarity between the neural representations from the CNN model and the neural representations for human visual perception in the context of the perception of digits versus objects, particularly in the primary visual and associated areas. This study also illustrates the uniqueness of human visual perception. Unlike the CNN model, the neural representation of digits and objects for humans is more widely distributed across the whole brain, including the frontal and temporal areas.
引用
收藏
页码:2018 / 2038
页数:21
相关论文
共 50 条
  • [41] A Deep Convolutional Neural Network for Bangla Handwritten Numeral Recognition
    Islam, Kazi Mejbaul
    Noor, Rouhan
    Saha, Chaity
    Rahimi, Md Jakaria
    2018 4TH IEEE INTERNATIONAL WIE CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (IEEE WIECON-ECE 2018), 2018, : 45 - 50
  • [42] Recognition of Urdu Handwritten Characters Using Convolutional Neural Network
    Husnain, Mujtaba
    Missen, Malik Muhammad Saad
    Mumtaz, Shahzad
    Jhanidr, Muhammad Zeeshan
    Coustaty, Mickael
    Luqman, Muhammad Muzzamil
    Ogier, Jean-Marc
    Choi, Gyu Sang
    APPLIED SCIENCES-BASEL, 2019, 9 (13):
  • [43] Bilingual handwritten numeral recognition using convolutional neural network
    Joy, Jettin
    Jayasree, M.
    EMERGING TRENDS IN ENGINEERING, SCIENCE AND TECHNOLOGY FOR SOCIETY, ENERGY AND ENVIRONMENT, 2018, : 817 - 823
  • [44] EkushNet: Using Convolutional Neural Network for Bangla Handwritten Recognition
    Rabby, A. K. M. Shahariar Azad
    Haque, Sadeka
    Abujar, Sheikh
    Hossain, Syed Akhter
    8TH INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING & COMMUNICATIONS (ICACC-2018), 2018, 143 : 603 - 610
  • [45] Persian Handwritten Character Recognition Using Convolutional Neural Network
    Roohi, Samad
    Alizadehashrafi, Behnam
    2017 10TH IRANIAN CONFERENCE ON MACHINE VISION AND IMAGE PROCESSING (MVIP), 2017, : 247 - 251
  • [46] Bangla Handwritten Character Recognition With Multilayer Convolutional Neural Network
    Abir, B. M.
    Mahal, Somania Nur
    Islam, Md Saiful
    Chakrabarty, Amitabha
    ADVANCES IN DATA AND INFORMATION SCIENCES, ICDIS 2017, VOL 2, 2019, 39 : 155 - 165
  • [47] Handwritten Digit String Recognition using Convolutional Neural Network
    Zhan, Hongjian
    Lyu, Shujing
    Lu, Yue
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 3729 - 3734
  • [48] Handwritten signature verification using shallow convolutional neural network
    Anamika Jain
    Satish Kumar Singh
    Krishna Pratap Singh
    Multimedia Tools and Applications, 2020, 79 : 19993 - 20018
  • [49] Optimized Convolutional Neural Network for Tamil Handwritten Character Recognition
    Lincy, R. Babitha
    Gayathri, R.
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2022, 36 (11)
  • [50] Persian Handwritten Character Recognition Using Convolutional Neural Network
    Sarvaramini, Farzin
    Nasrollahzadeh, Alireza
    Soryani, Mohsen
    26TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE 2018), 2018, : 1676 - 1680