Neural representations of the perception of handwritten digits and visual objects from a convolutional neural network compared to humans

被引:1
|
作者
Lee, Juhyeon [1 ]
Jung, Minyoung [1 ]
Lustig, Niv [1 ]
Lee, Jong-Hwan [1 ,2 ]
机构
[1] Korea Univ, Dept Brain & Cognit Engn, Seoul, South Korea
[2] Korea Univ, Dept Brain & Cognit Engn, Anam ro 145, Seoul 02841, South Korea
基金
新加坡国家研究基金会;
关键词
convolutional neural network; functional magnetic resonance imaging; handwritten digits; representational similarity analysis; visual objects; visual perception; NUMBER FORM AREA; BRAIN; FMRI; SELECTIVITY; GRADIENT; COMPLEX; MOTION; CODE;
D O I
10.1002/hbm.26189
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We investigated neural representations for visual perception of 10 handwritten digits and six visual objects from a convolutional neural network (CNN) and humans using functional magnetic resonance imaging (fMRI). Once our CNN model was fine-tuned using a pre-trained VGG16 model to recognize the visual stimuli from the digit and object categories, representational similarity analysis (RSA) was conducted using neural activations from fMRI and feature representations from the CNN model across all 16 classes. The encoded neural representation of the CNN model exhibited the hierarchical topography mapping of the human visual system. The feature representations in the lower convolutional (Conv) layers showed greater similarity with the neural representations in the early visual areas and parietal cortices, including the posterior cingulate cortex. The feature representations in the higher Conv layers were encoded in the higher-order visual areas, including the ventral/medial/dorsal stream and middle temporal complex. The neural representations in the classification layers were observed mainly in the ventral stream visual cortex (including the inferior temporal cortex), superior parietal cortex, and prefrontal cortex. There was a surprising similarity between the neural representations from the CNN model and the neural representations for human visual perception in the context of the perception of digits versus objects, particularly in the primary visual and associated areas. This study also illustrates the uniqueness of human visual perception. Unlike the CNN model, the neural representation of digits and objects for humans is more widely distributed across the whole brain, including the frontal and temporal areas.
引用
收藏
页码:2018 / 2038
页数:21
相关论文
共 50 条
  • [1] A Shallow Convolutional Neural Network for Accurate Handwritten Digits Classification
    Golovko, Vladimir
    Egor, Mikhno
    Brich, Aliaksandr
    Sachenko, Anatoliy
    PATTERN RECOGNITION AND INFORMATION PROCESSING, 2017, 673 : 77 - 85
  • [2] DeepBanglaNet: A Deep Convolutional Neural Network to Recognize Bengali Handwritten Digits
    Mahmud, Tanvir
    Hossain, Abdul Rakib
    Fattah, Shaikh Anowarul
    2020 IEEE REGION 10 SYMPOSIUM (TENSYMP) - TECHNOLOGY FOR IMPACTFUL SUSTAINABLE DEVELOPMENT, 2020, : 742 - 745
  • [3] Fuzzy Logic Module of Convolutional Neural Network for Handwritten Digits Recognition
    Popko, E. A.
    Weinstein, I. A.
    5TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES (IC-MSQUARE 2016), 2016, 738
  • [4] Recognizing handwritten digits using a convolutional neural network and TensorFlow library
    Teodorescu, Paul
    ROMANIAN JOURNAL OF INFORMATION TECHNOLOGY AND AUTOMATIC CONTROL-REVISTA ROMANA DE INFORMATICA SI AUTOMATICA, 2019, 29 (04): : 47 - 62
  • [5] Recognition of Bengali Handwritten Digits Using Convolutional Neural Network Architectures
    Hasan, Md Mahmudul
    Ul Islam, Md Rafid
    Mahmood, Md Tareq
    2018 INTERNATIONAL CONFERENCE ON BANGLA SPEECH AND LANGUAGE PROCESSING (ICBSLP), 2018,
  • [6] DigiNet: Prediction of Assamese handwritten digits using convolutional neural network
    Dutta, Prarthana
    Muppalaneni, Naresh Babu
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (24):
  • [7] Recognition Effects of Deep Convolutional Neural Network on Smudged Handwritten Digits
    Xu, Zhe
    Terada, Yusuke
    Jia, Dongbao
    Cai, Zonghui
    Gao, Shangce
    2018 5TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE 2018), 2018, : 412 - 416
  • [8] Wavelet Convolutional Neural Networks for Handwritten Digits Recognition
    Ben Chaabane, Chiraz
    Mellouli, Dorra
    Hamdani, Tarek M.
    Alimi, Adel M.
    Abraham, Ajith
    HYBRID INTELLIGENT SYSTEMS, HIS 2017, 2018, 734 : 305 - 310
  • [9] Handwritten Hindi Digits Recognition Using Convolutional Neural Network with RMSprop Optimization
    Reddy, R. Vijaya Kumar
    Rao, B. Srinivasa
    Raju, Prudvi
    PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS), 2018, : 45 - 51
  • [10] Handwritten Digits Recognition With Subgroup Neural Network
    Wang Minghui
    Pan Xinan
    Zhong Yixin (Department of Information Engineering
    TheJournalofChinaUniversitiesofPostsandTelecommunications, 1994, (01) : 52 - 56