Recent advances in regulating the performance of acid oxygen reduction reaction on carbon-supported non-precious metal single atom catalysts

被引:49
|
作者
Wang, Yanqiu [1 ]
Hao, Jiayu [1 ]
Liu, Yang [1 ]
Liu, Min [2 ]
Sheng, Kuang [1 ]
Wang, Yue [1 ]
Yang, Jun [1 ]
Li, Jie [1 ]
Li, Wenzhang [1 ]
机构
[1] Cent South Univ, Sch Chem & Chem Engn, Changsha 410083, Hunan, Peoples R China
[2] Cent South Univ, Sch Phys & Elect, Changsha 410083, Hunan, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Oxygen reduction reaction; Single atom catalysts; Microenvironment of center metal; Regulation of center metal atoms; Electron structure; Proton-exchange-membrane fuel cells; FE-N-C; ACTIVE-SITES; EFFICIENT OXYGEN; RATIONAL DESIGN; IRON; IDENTIFICATION; ELECTROCATALYSTS; MECHANISMS; DESCRIPTOR; NANOTUBES;
D O I
10.1016/j.jechem.2022.09.047
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Developing high performance and low-cost catalysts for oxygen reduction reaction (ORR) in challenging acid condition is vital for proton-exchange-membrane fuel cells (PEMFCs). Carbon-supported non -precious metal single atom catalysts (SACs) have been identified as potential catalysts in the field. Great advance has been obtained in constructing diverse active sites of SACs for improving the perfor-mance and understanding the fundamental principles of regulating acid ORR performance. However, the ORR performance of SACs is still unsatisfactory. Importantly, microenvironment adjustment of SACs offers chance to promote the performance of acid ORR. In this review, acid ORR mechanism, atten-uation mechanism and performance improvement strategies of SACs are presented. The strategies for promoting ORR activity of SACs include the adjustment of center metal and its microenvironment. The relationship of ORR performance and structure is discussed with the help of advanced experimental investigations and theoretical calculations, which will offer helpful direction for designing advanced SACs for ORR.(c) 2022 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
引用
收藏
页码:601 / 616
页数:16
相关论文
共 50 条
  • [41] Recent advances in carbon-supported iron group electrocatalysts for the oxygen reduction reaction
    Li, Ping
    Wang, Huan-lei
    NEW CARBON MATERIALS, 2021, 36 (04) : 665 - 680
  • [42] Recent advances in carbon-supported iron group electrocatalysts for the oxygen reduction reaction
    Li, Ping
    Wang, Huan-Lei
    Xinxing Tan Cailiao/New Carbon Materials, 2021, 36 (04): : 665 - 682
  • [43] Recent Advances for MOF-Derived Carbon-Supported Single-Atom Catalysts
    Han, Aijuan
    Wang, Bingqing
    Kumar, Anuj
    Qin, Yongji
    Jin, Jing
    Wang, Xinhe
    Yang, Can
    Dong, Bo
    Jia, Yin
    Liu, Junfeng
    Sun, Xiaoming
    SMALL METHODS, 2019, 3 (09):
  • [44] Activity and stability of non-precious metal catalysts for oxygen reduction in acid and alkaline electrolytes
    Li, Xuguang
    Liu, Gang
    Popov, Branko N.
    JOURNAL OF POWER SOURCES, 2010, 195 (19) : 6373 - 6378
  • [45] Carbon-supported metal nanodendrites as efficient, stable catalysts for the oxygen reduction reaction
    Venarusso, Luna B.
    Boone, Chirley V.
    Bettini, Jefferson
    Maia, Gilberto
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (04) : 1714 - 1726
  • [46] Recent Progress in Carbon-Supported Single-Atom Catalysts
    Bae, Ingyeong
    Noh, Jiwang
    Kim, Sunkyu
    APPLIED CHEMISTRY FOR ENGINEERING, 2025, 36 (01): : 16 - 24
  • [47] Synthesis-structure-performance correlation for poly(phenylenediamine)s/iron/carbon non-precious metal catalysts for oxygen reduction reaction
    Zhu, Yansong
    Zhang, Bingsen
    Feng, Zhenbao
    Su, Dang Sheng
    CATALYSIS TODAY, 2016, 260 : 112 - 118
  • [48] Recent Advances in Non-Precious Metal-Nitrogen-Carbon Single-Site Catalysts for CO2 Electroreduction Reaction to CO
    Chen, Yiqun
    Zhang, Junru
    Yang, Lijun
    Wang, Xizhang
    Wu, Qiang
    Hu, Zheng
    ELECTROCHEMICAL ENERGY REVIEWS, 2022, 5 (04)
  • [49] Effect of transition metal (M: Fe, Co or Mn) for the oxygen reduction reaction with non-precious metal catalysts in acid medium
    Dominguez, C.
    Perez-Alonso, F. J.
    Salam, M. Abdel
    Gomez de la Fuente, J. L.
    Al-Thabaiti, S. A.
    Basahel, S. N.
    Pena, M. A.
    Fierro, J. L. G.
    Rojas, S.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (10) : 5309 - 5318
  • [50] Density functional theory study of oxygen reduction reaction on non-precious transition metal/nitrogen doped carbon catalysts
    Liu, Kexi
    Wang, Guofeng
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254