Componentwise linearity of powers of cover ideals

被引:0
|
作者
Selvaraja, S. [1 ]
Skelton, Joseph W. [2 ]
机构
[1] Chennai Math Inst, H1,SIPCOT IT Pk, Chennai 603103, Tamil Nadu, India
[2] Tulane Univ, Dept Math, 6823 St Charles Ave, New Orleans, LA 70118 USA
关键词
Cover ideal; Symbolic power; Componentwise linear; Vertex decomposable graphs; SYMBOLIC POWERS; GRAPHS; REGULARITY;
D O I
10.1007/s10801-022-01160-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite simple graph and J (G) denote its vertex cover ideal in a polynomial ring over a field. The k-th symbolic power of J (G) is denoted by J (G)((k)). In this paper, we give a criterion for cover ideals of vertex decomposable graphs to have the property that all their symbolic powers are not componentwise linear. Also, we give a necessary and sufficient condition on G so that J (G)(k) is a componentwise linear ideal for some (equivalently, for all) k >= 2 when G is a graph such that G\N-G[A] has a simplicial vertex for any independent set A of G. Using this result, we prove that J (G)(k) is a componentwise linear ideal for several classes of graphs for all k >= 2. In particular, if G is a bipartite graph, then J (G) is a componentwise linear ideal if and only if J (G)(k) is a componentwise linear ideal for some (equivalently, for all) k >= 2.
引用
收藏
页码:111 / 134
页数:24
相关论文
共 50 条
  • [31] ROOTED ORDER ON MINIMAL GENERATORS OF POWERS OF SOME COVER IDEALS
    Erey, Nursel
    OSAKA JOURNAL OF MATHEMATICS, 2022, 59 (02) : 253 - 267
  • [32] ON THE MINIMAL FREE RESOLUTION OF SYMBOLIC POWERS OF COVER IDEALS OF GRAPHS
    Fakhari, S. A. Seyed
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (09) : 3687 - 3698
  • [33] Depth and Stanley depth of symbolic powers of cover ideals of graphs
    Fakhari, S. A. Seyed
    JOURNAL OF ALGEBRA, 2017, 492 : 402 - 413
  • [34] Integrally closed and componentwise linear ideals
    Aldo Conca
    Emanuela De Negri
    Maria Evelina Rossi
    Mathematische Zeitschrift, 2010, 265 : 715 - 734
  • [35] Integrally closed and componentwise linear ideals
    Conca, Aldo
    De Negri, Emanuela
    Rossi, Maria Evelina
    MATHEMATISCHE ZEITSCHRIFT, 2010, 265 (03) : 715 - 734
  • [36] Componentwise linear ideals and Golod rings
    Herzog, J
    Reiner, V
    Welker, V
    MICHIGAN MATHEMATICAL JOURNAL, 1999, 46 (02) : 211 - 223
  • [37] Completely m-full ideals and componentwise linear ideals
    Harima, Tadahito
    Watanabe, Junzo
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2015, 158 (02) : 239 - 248
  • [38] Componentwise linearity and the gcd condition are preserved by the polarization
    Nemati, Navid
    Pournaki, Mohammad Reza
    Yassemi, Siamak
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2021, 64 (04): : 391 - 399
  • [39] Powers of the vertex cover ideals (vol 65, pg 169, 2014)
    Lu, Danchneg
    Wang, Zexin
    COLLECTANEA MATHEMATICA, 2025, 76 (01) : 205 - 209
  • [40] COHEN-MACAULAYNESS AND LIMIT BEHAVIOR OF DEPTH FOR POWERS OF COVER IDEALS
    Constantinescu, A.
    Pournaki, M. R.
    Fakhari, S. A. Seyed
    Terai, N.
    Yassemi, S.
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (01) : 143 - 157