Temperature compensation in high accuracy accelerometers using multi-sensor and machine learning methods

被引:1
|
作者
Iafolla, Lorenzo [1 ]
Santoli, Francesco [2 ]
Carluccio, Roberto [1 ]
Chiappini, Stefano [1 ]
Fiorenza, Emiliano [2 ]
Lefevre, Carlo [2 ]
Loffredo, Pasqualino [2 ]
Lucente, Marco [2 ]
Morbidini, Alfredo [2 ]
Pignatelli, Alessandro [1 ]
Chiappini, Massimo [1 ]
机构
[1] Ist Nazl Geofis & Vulcanol, Via Vigna Murata 605, I-00143 Rome, Italy
[2] Ist Astrofis & Planetol Spaziali IAPS, Ist Nazl Astrofis INAF, Via Fosso del Cavaliere 100, I-00133 Rome, Italy
关键词
Accelerometer; Temperature; Multi-sensor; Machine learning; Deep learning; Thermal gradient; Gravimeter; ITALIAN SPRING ACCELEROMETER; ISA;
D O I
10.1016/j.measurement.2023.114090
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Temperature is a major source of inaccuracy in high-sensitivity accelerometers and gravimeters. Active thermal control systems require power and may not be ideal in some contexts such as airborne or spaceborne applications. We propose a solution that relies on multiple thermometers placed within the accelerometer to measure temperature and thermal gradient variations. Machine Learning algorithms are used to relate the temperatures to their effect on the accelerometer readings. However, obtaining labeled data for training these algorithms can be difficult. Therefore, we also developed a training platform capable of replicating temperature variations in a laboratory setting. Our experiments revealed that thermal gradients had a significant effect on accelerometer readings, emphasizing the importance of multiple thermometers. The proposed method was experimentally tested and revealed a great potential to be extended to other sources of inaccuracy as well as to other types of measuring systems, such as magnetometers or gyroscopes.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Autonomous Parking-Lots Detection with Multi-Sensor Data Fusion Using Machine Deep Learning Techniques
    Iqbal, Kashif
    Abbas, Sagheer
    Khan, Muhammad Adnan
    Ather, Atifa
    Khan, Muhammad Saleem
    Fatima, Areej
    Ahmad, Gulzar
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 66 (02): : 1595 - 1612
  • [42] Detecting Changes in Impervious Surfaces Using Multi-Sensor Satellite Imagery and Machine Learning Methodology in a Metropolitan Area
    Wu, Yuewan
    Pan, Jiayi
    REMOTE SENSING, 2023, 15 (22)
  • [43] Predicting the Forest Canopy Height from LiDAR and Multi-Sensor Data Using Machine Learning over India
    Ghosh, Sujit M.
    Behera, Mukunda D.
    Kumar, Subham
    Das, Pulakesh
    Prakash, Ambadipudi J.
    Bhaskaran, Prasad K.
    Roy, Parth S.
    Barik, Saroj K.
    Jeganathan, Chockalingam
    Srivastava, Prashant K.
    Behera, Soumit K.
    REMOTE SENSING, 2022, 14 (23)
  • [44] Data quality evaluation for smart multi-sensor process monitoring using data fusion and machine learning algorithms
    Segreto, Tiziana
    Teti, Roberto
    PRODUCTION ENGINEERING-RESEARCH AND DEVELOPMENT, 2023, 17 (02): : 197 - 210
  • [45] Clustering Methods for Multi-sensor data fusion
    Han, Liu
    Lei, Zhang
    2012 INTERNATIONAL CONFERENCE ON INDUSTRIAL CONTROL AND ELECTRONICS ENGINEERING (ICICEE), 2012, : 1166 - 1169
  • [46] Fault Diagnosis Scheme for Railway Switch Machine Using Multi-Sensor Fusion Tensor Machine
    Chen, Chen
    Xu, Zhongwei
    Mei, Meng
    Huang, Kai
    Lo, Siu Ming
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 79 (03): : 4533 - 4549
  • [47] Woody Aboveground Biomass Mapping of the Brazilian Savanna with a Multi-Sensor and Machine Learning Approach
    Bispo, Polyanna da Conceicao
    Rodriguez-Veiga, Pedro
    Zimbres, Barbara
    de Miranda, Sabrina Couto
    Giusti Cezare, Cassio Henrique
    Fleming, Sam
    Baldacchino, Francesca
    Louis, Valentin
    Rains, Dominik
    Garcia, Mariano
    Espirito-Santo, Fernando Del Bon
    Roitman, Iris
    Pacheco-Pascagaza, Ana Maria
    Gou, Yaqing
    Roberts, John
    Barrett, Kirsten
    Ferreira, Laerte Guimaraes
    Shimbo, Julia Zanin
    Alencar, Ane
    Bustamante, Mercedes
    Woodhouse, Iain Hector
    Sano, Edson Eyji
    Ometto, Jean Pierre
    Tansey, Kevin
    Balzter, Heiko
    REMOTE SENSING, 2020, 12 (17)
  • [48] Machine learning applied to multi-sensor information to reduce false alarm rate in the ICU
    Gal Hever
    Liel Cohen
    Michael F. O’Connor
    Idit Matot
    Boaz Lerner
    Yuval Bitan
    Journal of Clinical Monitoring and Computing, 2020, 34 : 339 - 352
  • [49] Object Detection Using Multi-Sensor Fusion Based on Deep Learning
    Zhou, Taohua
    Jiang, Kun
    Xiao, Zhongyang
    Yu, Chunlei
    Yang, Diange
    CICTP 2019: TRANSPORTATION IN CHINA-CONNECTING THE WORLD, 2019, : 5770 - 5782
  • [50] Natural Gas Transfer Pump Fault Diagnosis on Multi-Sensor Fusion and Machine Learning
    Dong, Xu-Bin
    Li, Chen-Yong
    Patel, Sofia
    Journal of Network Intelligence, 2024, 9 (01): : 443 - 459