Deep learning-based idiomatic expression recognition for the Amharic language

被引:2
|
作者
Endalie, Demeke [1 ]
Haile, Getamesay [1 ]
Taye, Wondmagegn [2 ]
机构
[1] Jimma Inst Technol, Fac Comp & Informat, Jimma, Ethiopia
[2] Jimma Inst Technol, Fac Civil & Environm Engn, Jimma, Ethiopia
来源
PLOS ONE | 2023年 / 18卷 / 12期
关键词
D O I
10.1371/journal.pone.0295339
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Idiomatic expressions are built into all languages and are common in ordinary conversation. Idioms are difficult to understand because they cannot be deduced directly from the source word. Previous studies reported that idiomatic expression affects many Natural language processing tasks in the Amharic language. However, most natural language processing models used with the Amharic language, such as machine translation, semantic analysis, sentiment analysis, information retrieval, question answering, and next-word prediction, do not consider idiomatic expressions. As a result, in this paper, we proposed a convolutional neural network (CNN) with a FastText embedding model for detecting idioms in an Amharic text. We collected 1700 idiomatic and 1600 non-idiomatic expressions from Amharic books to test the proposed model's performance. The proposed model is then evaluated using this dataset. We employed an 80 by 10,10 splitting ratio to train, validate, and test the proposed idiomatic recognition model. The proposed model's learning accuracy across the training dataset is 98%, and the model achieves 80% accuracy on the testing dataset. We compared the proposed model to machine learning models like K-Nearest Neighbor (KNN), Support Vector Machine (SVM), and Random Forest classifiers. According to the experimental results, the proposed model produces promising results.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Deep Learning-Based Cyberbullying Detection in Kurdish Language
    Badawi, Soran
    COMPUTER JOURNAL, 2024, 67 (07): : 2548 - 2558
  • [32] Sample Balancing for Deep Learning-Based Visual Recognition
    Chen, Xin
    Weng, Jian
    Luo, Weiqi
    Lu, Wei
    Wu, Huimin
    Xu, Jiaming
    Tian, Qi
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (10) : 3962 - 3976
  • [33] Deep learning-based image recognition for autonomous driving
    Fujiyoshi, Hironobu
    Hirakawa, Tsubasa
    Yamashita, Takayoshi
    IATSS RESEARCH, 2019, 43 (04) : 244 - 252
  • [34] Deep Learning-based Telephony Speech Recognition in the Wild
    Han, Kyu J.
    Hahm, Seongjun
    Kim, Byung-Hak
    Kim, Jungsuk
    Lane, Ian
    18TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2017), VOLS 1-6: SITUATED INTERACTION, 2017, : 1323 - 1327
  • [35] A Review on Deep Learning-based Face Recognition Techniques
    Padma Suresh, L.
    Anil, J.
    2023 Innovations in Power and Advanced Computing Technologies, i-PACT 2023, 2023,
  • [36] Deep Learning-Based Violin Bowing Action Recognition
    Sun, Shih-Wei
    Liu, Bao-Yun
    Chang, Pao-Chi
    SENSORS, 2020, 20 (20) : 1 - 17
  • [37] A Deep Learning-based Unified Solution for Character Recognition
    Das, Avishek
    Rabby, A. K. M. Shahariar Azad
    Kowsar, Ibna
    Rahman, Fuad
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 1671 - 1677
  • [38] Deep Learning-Based Image Recognition of Agricultural Pests
    Xu, Weixiao
    Sun, Lin
    Zhen, Cheng
    Liu, Bo
    Yang, Zhengyi
    Yang, Wenke
    APPLIED SCIENCES-BASEL, 2022, 12 (24):
  • [39] Deep learning-based garbage image recognition algorithm
    Yuefei Li
    Wei Liu
    Applied Nanoscience, 2023, 13 : 1415 - 1424
  • [40] Deep learning-based face detection and recognition on drones
    Rostami M.
    Farajollahi A.
    Parvin H.
    Journal of Ambient Intelligence and Humanized Computing, 2024, 15 (01) : 373 - 387