3D printing of magneto-active smart materials for advanced actuators and soft robotics applications

被引:51
|
作者
Khalid, Muhammad Yasir [1 ]
Arif, Zia Ullah [2 ]
Tariq, Ali [3 ]
Hossain, Mokarram [4 ]
Khan, Kamran Ahmed [1 ]
Umer, Rehan [1 ]
机构
[1] Khalifa Univ Sci & Technol, Dept Aerosp Engn, POB 127788, Abu Dhabi, U Arab Emirates
[2] Univ Southampton, Dept Mech Engn, Southampton SO17 1BJ, England
[3] Univ Management & Technol Lahore, Dept Mech Engn, Sialkot Campus, Sialkot 51041, Pakistan
[4] Swansea Univ, Zienkiewicz Inst Modelling Data & AI, Fac Sci & Engn, Swansea SA1 8EN, England
关键词
3D printing; 4D Printing; Magneto -active materials; Soft robotics; Smart actuators; SHAPE-MEMORY POLYMERS; STIMULI-RESPONSIVE MATERIALS; 2-PHOTON POLYMERIZATION; MECHANICAL-PROPERTIES; DRUG-DELIVERY; 4D; HYDROGEL; DRIVEN; NANOCOMPOSITES; TECHNOLOGY;
D O I
10.1016/j.eurpolymj.2023.112718
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In the contemporary era, novel manufacturing technologies like additive manufacturing (AM) have revolutionized the different engineering sectors including biomedical, aerospace, electronics, etc. Four-dimensional (4D) printing aka AM of smart materials is gaining popularity among the scientific community, which has the excellent ability to make soft structures such as soft robots, actuators, and grippers. These soft structures are developed by applying various stimuli such as pH, temperature, magnetic field, and many combinations onto soft materials. Stimuli in 3D printing permit various shape-morphing behaviors such as bending, twisting, folding, swelling, rolling, shrinking, origami, or locomotion. A wide variety of soft magnetic structures can be fabricated through the incorporation of soft or hard magnetic particles into soft materials resulting in magneto-active soft materials (MASMs). With this integration, magneto-thermal coupling actuation allows diverse magnetodeformations, facilitating the development of personalized devices that are capable of enhanced deformation. In this review, guidelines are provided on the 3D printing for MASMs such as magneto-active polymers (MAPs), magneto-active composites, and magneto-active hydrogels (MAHs) on the booming development of various smart and flexible devices such as soft robots, wearable electronics, and biomimetic devices. Moreover, 3Dprinted soft robotics have an outstanding capacity to adapt to complicated situations for many advanced actuating applications. Finally, some current challenges and emerging areas in this exciting technology have been proposed. Lastly, it is anticipated that technological advancements in developing smart and intelligent magnetoactive structures will have a significant impact on the design of real-world applications.
引用
收藏
页数:42
相关论文
共 50 条
  • [21] Soft Somatosensitive Actuators via Embedded 3D Printing
    Truby, Ryan L.
    Wehner, Michael
    Grosskopf, Abigail K.
    Vogt, Daniel M.
    Uzel, Sebastien G. M.
    Wood, Robert J.
    Lewis, Jennifer A.
    ADVANCED MATERIALS, 2018, 30 (15)
  • [22] 3D printing of soft fluidic actuators with graded porosity
    Willemstein, Nick
    van der Kooij, Herman
    Sadeghi, Ali
    SOFT MATTER, 2022, 18 (38) : 7269 - 7279
  • [23] Vat Photopolymerization 3D Printing of Advanced Soft Sensors and Actuators: From Architecture to Function
    Zhao, Wenyu
    Wang, Ziya
    Zhang, Jianpeng
    Wang, Xiaopu
    Xu, Yingtian
    Ding, Ning
    Peng, Zhengchun
    ADVANCED MATERIALS TECHNOLOGIES, 2021, 6 (08)
  • [24] Freeform Liquid 3D Printing of Soft Functional Components for Soft Robotics
    Calais, Theo
    Sanandiya, Naresh D.
    Jain, Snehal
    Kanhere, Elgar, V
    Kumar, Siddharth
    Yeow, Raye Chen-Hua
    Alvarado, Pablo Valdivia Y.
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (01) : 2301 - 2315
  • [25] Design and Applications of Soft Actuators Based on Digital Light Processing (DLP) 3D Printing
    Wan, Jingjing
    Sun, Lechen
    Du, Tianhao
    IEEE ACCESS, 2023, 11 : 86227 - 86242
  • [26] Advanced polymer materials for 3D printing
    Gorin, Craig
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [27] 3D printing of soft sensors for soft gripper applications
    Goh G.L.
    Yeong W.Y.
    Altherr J.
    Tan J.
    Campolo D.
    Materials Today: Proceedings, 2022, 70 : 224 - 229
  • [28] 3D printing of robotic soft actuators with programmable bioinspired architectures
    Schaffner, Manuel
    Faber, Jakob A.
    Pianegonda, Lucas
    Ruhs, Patrick A.
    Coulter, Fergal
    Studart, Andre R.
    NATURE COMMUNICATIONS, 2018, 9
  • [29] Natural Materials for 3D Printing and Their Applications
    Su, Chunyu
    Chen, Yutong
    Tian, Shujing
    Lu, Chunxiu
    Lv, Qizhuang
    GELS, 2022, 8 (11)
  • [30] FUSED DEPOSITION MODELLING FOR 3D PRINTING OF SOFT ANTHROPOMORPHIC ACTUATORS
    Curkovic, P.
    Cubric, G.
    INTERNATIONAL JOURNAL OF SIMULATION MODELLING, 2021, 20 (02) : 303 - 314