Semi-parametric single-index predictive regression models with cointegrated regressors

被引:2
|
作者
Zhou, Weilun [1 ]
Gao, Jiti [2 ]
Harris, David [3 ]
Kew, Hsein [2 ]
机构
[1] Zhongnan Univ Econ & Law, Wenlan Sch Business, Wuhan, Peoples R China
[2] Monash Univ, Dept Econometr & Business & Stat, Melbourne, Australia
[3] Univ Melbourne, Dept Econ, Melbourne, Australia
基金
澳大利亚研究理事会;
关键词
Single -index models; Hermite orthogonal series; Cointegrated predictors; Stock return predictability; ASYMPTOTIC NORMALITY; CONVERGENCE-RATES; SERIES ESTIMATORS; ERROR-CORRECTION; EFFICIENT TESTS; TIME-SERIES; UNIT-ROOT; STATIONARITY; PARAMETER; INFERENCE;
D O I
10.1016/j.jeconom.2023.105577
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper considers the estimation of a semi-parametric single-index regression model that allows for nonlinear predictive relationships. This model is useful for predicting financial asset returns, whose observed behaviour resembles a stationary process, if the multiple nonstationary predictors are cointegrated. The presence of cointegrated regressors imposes a single-index structure in the model, and this structure not only balances the nonstationarity properties of the multiple predictors with the stationarity properties of asset returns but also avoids the curse of dimensionality associated with nonparametric regression function estimation. An orthogonal series expansion is used to approximate the unknown link function for the single-index component. We consider the constrained nonlinear least squares estimator of the single-index (or the cointegrating) parameters and the plug-in estimator of the link function, and derive their asymptotic properties. In an empirical application, we find some evidence of in-sample nonlinear predictability of U.S. stock returns using cointegrated predictors. We also find that the singleindex model in general produces better out-of-sample forecasts than both the historical average benchmark and the linear predictive regression model.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Penalized LAD Regression for Single-index Models
    Yang, Hu
    Lv, Jing
    Guo, Chaohui
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (07) : 2392 - 2408
  • [22] Nonlinear regression models with single-index heteroscedasticity
    Zhang, Jun
    Gai, Yujie
    Lin, Bingqing
    Zhu, Xuehu
    STATISTICA NEERLANDICA, 2019, 73 (02) : 292 - 316
  • [23] Bayesian quantile regression for single-index models
    Yuao Hu
    Robert B. Gramacy
    Heng Lian
    Statistics and Computing, 2013, 23 : 437 - 454
  • [24] Functional single-index quantile regression models
    Peijun Sang
    Jiguo Cao
    Statistics and Computing, 2020, 30 : 771 - 781
  • [25] A new algorithm for fitting semi-parametric variance regression models
    Robledo, Kristy P.
    Marschner, Ian C.
    COMPUTATIONAL STATISTICS, 2021, 36 (04) : 2313 - 2335
  • [26] A new algorithm for fitting semi-parametric variance regression models
    Kristy P. Robledo
    Ian C. Marschner
    Computational Statistics, 2021, 36 : 2313 - 2335
  • [27] Variable selection in finite mixture of semi-parametric regression models
    Ormoz, Ehsan
    Eskandari, Farzad
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (03) : 695 - 711
  • [28] Interpretable semi-parametric regression models with defined error bounds
    Otte, Clemens
    NEUROCOMPUTING, 2014, 143 : 1 - 6
  • [29] Model checking for parametric single-index quantile models
    Yuan, Liangliang
    Liu, Wenhui
    Zi, Xuemin
    Wang, Zhaojun
    STAT, 2020, 9 (01):
  • [30] A goodness-of-fit test for parametric and semi-parametric models in multiresponse regression
    Chen, Song Xi
    Van Keilegom, Ingrid
    BERNOULLI, 2009, 15 (04) : 955 - 976