Semi-parametric single-index predictive regression models with cointegrated regressors

被引:2
|
作者
Zhou, Weilun [1 ]
Gao, Jiti [2 ]
Harris, David [3 ]
Kew, Hsein [2 ]
机构
[1] Zhongnan Univ Econ & Law, Wenlan Sch Business, Wuhan, Peoples R China
[2] Monash Univ, Dept Econometr & Business & Stat, Melbourne, Australia
[3] Univ Melbourne, Dept Econ, Melbourne, Australia
基金
澳大利亚研究理事会;
关键词
Single -index models; Hermite orthogonal series; Cointegrated predictors; Stock return predictability; ASYMPTOTIC NORMALITY; CONVERGENCE-RATES; SERIES ESTIMATORS; ERROR-CORRECTION; EFFICIENT TESTS; TIME-SERIES; UNIT-ROOT; STATIONARITY; PARAMETER; INFERENCE;
D O I
10.1016/j.jeconom.2023.105577
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper considers the estimation of a semi-parametric single-index regression model that allows for nonlinear predictive relationships. This model is useful for predicting financial asset returns, whose observed behaviour resembles a stationary process, if the multiple nonstationary predictors are cointegrated. The presence of cointegrated regressors imposes a single-index structure in the model, and this structure not only balances the nonstationarity properties of the multiple predictors with the stationarity properties of asset returns but also avoids the curse of dimensionality associated with nonparametric regression function estimation. An orthogonal series expansion is used to approximate the unknown link function for the single-index component. We consider the constrained nonlinear least squares estimator of the single-index (or the cointegrating) parameters and the plug-in estimator of the link function, and derive their asymptotic properties. In an empirical application, we find some evidence of in-sample nonlinear predictability of U.S. stock returns using cointegrated predictors. We also find that the singleindex model in general produces better out-of-sample forecasts than both the historical average benchmark and the linear predictive regression model.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Semi-parametric single-index two-part regression models
    Zhou, XH
    Liang, H
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (05) : 1378 - 1390
  • [2] Semi-parametric M-estimators in single-index models
    Delecroix, M
    Hristache, M
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 1999, 6 (02) : 161 - 185
  • [3] Semi-parametric estimation of partially linear single-index models
    Xia, YC
    Härdle, W
    JOURNAL OF MULTIVARIATE ANALYSIS, 2006, 97 (05) : 1162 - 1184
  • [4] PREDICTING BANKRUPTCY WITH SEMI-PARAMETRIC SINGLE-INDEX MODEL
    Masten, Arjana Brezigar
    Masten, Igor
    ECONOMIC RESEARCH-EKONOMSKA ISTRAZIVANJA, 2012, 25 (01): : 121 - 133
  • [5] Semi-parametric Estimation in a Single-index Model with Endogenous Variables
    Birke, Melanie
    Van Bellegem, Sebastien
    Van Keilegom, Ingrid
    SCANDINAVIAN JOURNAL OF STATISTICS, 2017, 44 (01) : 168 - 191
  • [6] Semi-parametric single-index panel data models with interactive fixed effects: Theory and practice
    Feng, Guohua
    Peng, Bin
    Su, Liangjun
    Yang, Thomas Tao
    JOURNAL OF ECONOMETRICS, 2019, 212 (02) : 607 - 622
  • [7] Estimation in semi-parametric regression with non-stationary regressors
    Chen, Jia
    Gao, Jiti
    Li, Degui
    BERNOULLI, 2012, 18 (02) : 678 - 702
  • [8] Tail single-index regression with locally stationary regressors
    Xu, Tao
    Chen, Yu
    Sun, Hongfang
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2025,
  • [9] Semi-parametric regression estimation of the tail index
    Jia, Mofei
    Taufer, Emanuele
    Dickson, Maria Michela
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (01): : 224 - 248
  • [10] Semi-parametric transformation boundary regression models
    Natalie Neumeyer
    Leonie Selk
    Charles Tillier
    Annals of the Institute of Statistical Mathematics, 2020, 72 : 1287 - 1315