V-Learning-A Simple, Efficient, Decentralized Algorithm for Multiagent Reinforcement Learning

被引:0
|
作者
Jin, Chi [1 ]
Liu, Qinghua [1 ]
Wang, Yuanhao [2 ]
Yu, Tiancheng [3 ]
机构
[1] Princeton Univ, Dept Elect & Comp Engn, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Comp Sci, Princeton, NJ 08544 USA
[3] MIT, Dept Elect & Comp Engn, Cambridge, MA 02139 USA
关键词
V-learning; Markov games; multiagent reinforcement learning; decentralized reinforcement learning; Nash equilibria; (coarse) correlated equilibria; GAMES; GO;
D O I
10.1287/moor.2021.0317
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A major challenge of multiagent reinforcement learning (MARL) is the curse of multiagents, where the size of the joint action space scales exponentially with the number of agents. This remains to be a bottleneck for designing efficient MARL algorithms, even in a basic scenario with finitely many states and actions. This paper resolves this challenge for the model of episodic Markov games. We design a new class of fully decentralized algorithms-V-learning, which provably learns Nash equilibria (in the two-player zero-sum setting), correlated equilibria, and coarse correlated equilibria (in the multiplayer general-sum setting) in a number of samples that only scales with max(i is an element of[m])A(i), where A(i) is the number of actions for the ith player. This is in sharp contrast to the size of the joint action space, which is Pi(m)(i=1) A(i). V-learning (in its basic form) is a new class of single-agent reinforcement learning (RL) algorithms that convert any adversarial bandit algorithm with suitable regret guarantees into an RL algorithm. Similar to the classical Q-learning algorithm, it performs incremental updates to the value functions. Different from Q-learning, it only maintains the estimates of V-values instead of Q-values. This key difference allows V-learning to achieve the claimed guarantees in the MARL setting by simply letting all agents run V-learning independently.
引用
收藏
页码:2295 / 2322
页数:28
相关论文
共 50 条
  • [31] Finite-Sample Analysis for Decentralized Batch Multiagent Reinforcement Learning With Networked Agents
    Zhang, Kaiqing
    Yang, Zhuoran
    Liu, Han
    Zhang, Tong
    Basar, Tamer
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (12) : 5925 - 5940
  • [32] WToE: Learning When to Explore in Multiagent Reinforcement Learning
    Dong, Shaokang
    Mao, Hangyu
    Yang, Shangdong
    Zhu, Shengyu
    Li, Wenbin
    Hao, Jianye
    Gao, Yang
    IEEE TRANSACTIONS ON CYBERNETICS, 2024, 54 (08) : 4789 - 4801
  • [33] A survey on transfer learning for multiagent reinforcement learning systems
    Da Silva, Felipe Leno
    Reali Costa, Anna Helena
    Journal of Artificial Intelligence Research, 2019, 64 : 645 - 703
  • [34] Accelerating Multiagent Reinforcement Learning through Transfer Learning
    da Silva, Felipe Leno
    Reali Costa, Anna Helena
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 5034 - 5035
  • [35] Distributed Neural Learning Algorithms for Multiagent Reinforcement Learning
    Dai, Pengcheng
    Liu, Hongzhe
    Yu, Wenwu
    Wang, He
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (23) : 21039 - 21060
  • [36] A Survey on Transfer Learning for Multiagent Reinforcement Learning Systems
    Da Silva, Felipe Leno
    Reali Costa, Anna Helena
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2019, 64 : 645 - 703
  • [37] SATF: A Scalable Attentive Transfer Framework for Efficient Multiagent Reinforcement Learning
    Chen, Bin
    Cao, Zehong
    Bai, Quan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 15
  • [38] Distributed Routing Optimization Algorithm for FANET Based on Multiagent Reinforcement Learning
    Ke, Yaqi
    Huang, Kai
    Qiu, Xiulin
    Song, Bo
    Xu, Lei
    Yin, Jun
    Yang, Yuwang
    IEEE SENSORS JOURNAL, 2024, 24 (15) : 24851 - 24864
  • [39] FMRQ-A Multiagent Reinforcement Learning Algorithm for Fully Cooperative Tasks
    Zhang, Zhen
    Zhao, Dongbin
    Gao, Junwei
    Wang, Dongqing
    Dai, Yujie
    IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (06) : 1367 - 1379
  • [40] A multiagent reinforcement learning algorithm to solve the maximum independent set problem
    Alipour, Mir Mohammad
    Abdolhosseinzadeh, Mohsen
    MULTIAGENT AND GRID SYSTEMS, 2020, 16 (01) : 101 - 115