Chaotic dynamics of an extended Duffing-van der Pol system with a non-smooth perturbation and parametric excitation

被引:2
|
作者
Hu, Sengen [1 ]
Zhou, Liangqiang [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Sch Math, Nanjing 210016, Peoples R China
关键词
extended Duffing-van der pol system; Melnikov's chaos; non-smooth perturbation; parametric excitation; stationary chaos; BIFURCATIONS; SUBJECT;
D O I
10.1515/zna-2023-0117
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Chaotic dynamics of a fifth-order extended Duffing-van der Pol system with a non-smooth periodic perturbation and parametric excitation are investigated both analytically and numerically in this paper. With the Fourier series, the system is expanded to the equivalent smooth system. The Melnikov perturbation method is used to derive the horseshoe chaos condition in the cases of homoclinic and heteroclinic intersections. The chaotic features for different system parameters are investigated in detail. The monotonic variation of the coefficients of parametric excitation and non-smooth periodic disturbance is found. With numerical methods, we validate the analytical results obtained by Melnikov's method. The impact of initial conditions is carefully analyzed by basins of attraction and the effect of non-smooth periodic disturbance on the basin of attraction is also investigated. Besides, the effect of different parameters on the bifurcation pathway into chaotic attractors is examined.
引用
收藏
页码:1015 / 1030
页数:16
相关论文
共 50 条
  • [41] A phenomenological model of EEG based on the dynamics of a stochastic Duffing-van der Pol oscillator network
    Ghorbanian, P.
    Ramakrishnan, S.
    Whitman, A.
    Ashrafiuon, H.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2015, 15 : 1 - 10
  • [42] Grazing phenomena of stochastic Duffing-Van der Pol one-sided constraint system
    Li, Gaojie
    Xu, Wei
    Wang, Liang
    Yingyong Lixue Xuebao/Chinese Journal of Applied Mechanics, 2008, 25 (04): : 551 - 555
  • [43] Chaotic motion of Van der Pol-Mathieu-Duffing system under bounded noise parametfic excitation
    Li, Jiaorui
    Xu, Wei
    Yang, Xiaoli
    Sun, Zhongkui
    JOURNAL OF SOUND AND VIBRATION, 2008, 309 (1-2) : 330 - 337
  • [44] Complex bursting dynamics in the cubic-quintic Duffing-van der Pol system with two external periodic excitations
    Xindong Ma
    Qinsheng Bi
    Lifeng Wang
    Meccanica, 2022, 57 : 1747 - 1766
  • [45] Complex bursting dynamics in the cubic-quintic Duffing-van der Pol system with two external periodic excitations
    Ma, Xindong
    Bi, Qinsheng
    Wang, Lifeng
    MECCANICA, 2022, 57 (7) : 1747 - 1766
  • [46] Chaotic dynamics of two Van der Pol-Duffing oscillators with Huygens coupling
    Belykh, V. N.
    Pankratova, E. V.
    REGULAR & CHAOTIC DYNAMICS, 2010, 15 (2-3): : 274 - 284
  • [47] Chaotic dynamics of two Van der Pol-Duffing oscillators with Huygens coupling
    V. N. Belykh
    E. V. Pankratova
    Regular and Chaotic Dynamics, 2010, 15 : 274 - 284
  • [48] Duffing-van der Pol oscillator type dynamics in Murali-Lakshmanan-Chua (MLC) circuit
    Srinivasan, K.
    Chandrasekar, V. K.
    Venkatesan, A.
    Mohamed, I. Raja
    CHAOS SOLITONS & FRACTALS, 2016, 82 : 60 - 71
  • [49] Stochastic response of Duffing-Van der Pol vibro-impact system with viscoelastic term under wide-band excitation
    Liu, Li
    Xu, Wei
    Yue, Xiaole
    Han, Qun
    CHAOS SOLITONS & FRACTALS, 2017, 104 : 748 - 757
  • [50] A Class of Different Fractional-Order Chaotic (Hyperchaotic) Complex Duffing-Van Der Pol Models and Their Circuits Implementations
    Mahmoud, Gamal M.
    Abed-Elhameed, Tarek M.
    Elbadry, Motaz M.
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2021, 16 (12):