Surface and Interface Engineering for the Catalysts of Electrocatalytic CO2 Reduction

被引:4
|
作者
Hu, Yiping [1 ]
Kang, Yijin [1 ]
机构
[1] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610054, Peoples R China
基金
中国国家自然科学基金;
关键词
electrocatalyst; sustainability; CO2; reduction; surface; interface; SELECTIVE ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE REDUCTION; COPPER ELECTRODES; HETEROGENEOUS CATALYSTS; GOLD NANOMATERIALS; HIGH-EFFICIENCY; ACTIVE-SITES; CU CATALYST; ELECTROREDUCTION; METAL;
D O I
10.1002/asia.202201001
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The massive use of fossil fuels releases a great amount of CO2, which substantially contributes to the global warming. For the global goal of putting CO2 emission under control, effective utilization of CO2 is particularly meaningful. Electrocatalytic CO2 reduction reaction (eCO(2)RR) has great potential in CO2 utilization, because it can convert CO2 into valuable carbon-containing chemicals and feedstock using renewable electricity. The catalyst design for eCO(2)RR is a key challenge to achieving efficient conversion of CO2 to fuels and useful chemicals. For a typical heterogeneous catalyst, surface and interface engineering is an effective approach to enhance reaction activity. Herein, the development and research progress in CO2 catalysts with focus on surface and interface engineering are reviewed. First, the fundaments of eCO(2)RR is briefly discussed from the reaction mechanism to performance evaluation methods, introducing the role of the surface and interface engineering of electrocatalyst in eCO(2)RR. Then, several routes to optimize the surface and interface of CO2 electrocatalysts, including morphology, dopants, atomic vacancies, grain boundaries, surface modification, etc., are reviewed and representative examples are given. At the end of this review, we share our personal views in future research of eCO(2)RR.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Electrocatalytic CO2 reduction to syngas
    Chang, Bing
    Min, Zhaojun
    Liu, Ning
    Wang, Nan
    Fan, Maohong
    Fan, Jing
    Wang, Jianji
    GREEN ENERGY & ENVIRONMENT, 2024, 9 (07) : 1085 - 1100
  • [42] Dual-Site Metal Catalysts for Electrocatalytic CO2 Reduction Reaction
    Liu, Li
    Wu, Xueting
    Wang, Fei
    Zhang, Lingling
    Wang, Xiao
    Song, Shuyan
    Zhang, Hongjie
    CHEMISTRY-A EUROPEAN JOURNAL, 2023, 29 (49)
  • [43] Emerging dual-atomic-site catalysts for electrocatalytic CO2 reduction
    Qiu, Na
    Li, Junjun
    Wang, Haiqing
    Zhang, Zhicheng
    SCIENCE CHINA-MATERIALS, 2022, 65 (12) : 3302 - 3323
  • [44] Electrocatalytic Alloys for CO2 Reduction
    He, Jingfu
    Johnson, Noah J. J.
    Huang, Aoxue
    Berlinguette, Curtis P.
    CHEMSUSCHEM, 2018, 11 (01) : 48 - 57
  • [45] Active site identification and engineering during the dynamic evolution of copper-based catalysts for electrocatalytic CO2 reduction
    Bangwei Deng
    Xueyang Zhao
    Yizhao Li
    Ming Huang
    Shihan Zhang
    Fan Dong
    Science China(Chemistry), 2023, (01) : 78 - 95
  • [46] Recent advances in surface modification for enhanced electrocatalytic CO2 reduction
    Li, Jiaxin
    He, Fan
    Cheng, Ziye
    Chen, Jiayi
    Zhang, Xiao
    Qi, Zhifu
    JOURNAL OF MATERIALS CHEMISTRY A, 2025,
  • [47] Engineering tandem catalysts and reactors for promoting electrocatalytic CO2 reduction reaction toward multi-carbon products
    Zhu, Shaojun
    Lu, Tianrui
    Lv, Jing-Jing
    Li, Jun
    Wang, Jichang
    Wang, Xin
    Jin, Huile
    Wang, Zheng-Jun
    Wang, Shun
    SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2024, 39
  • [48] Active site identification and engineering during the dynamic evolution of copper-based catalysts for electrocatalytic CO2 reduction
    Bangwei Deng
    Xueyang Zhao
    Yizhao Li
    Ming Huang
    Shihan Zhang
    Fan Dong
    Science China Chemistry, 2023, 66 : 78 - 95
  • [49] Active site identification and engineering during the dynamic evolution of copper-based catalysts for electrocatalytic CO2 reduction
    Deng, Bangwei
    Zhao, Xueyang
    Li, Yizhao
    Huang, Ming
    Zhang, Shihan
    Dong, Fan
    SCIENCE CHINA-CHEMISTRY, 2023, 66 (01) : 78 - 95
  • [50] Engineering intricacies of implementing single-atom alloy catalysts for low-temperature electrocatalytic CO2 reduction
    Seim, Isaac Kojo
    Chhetri, Manjeet
    Jones, John-Paul
    Yang, Ming
    CHEM CATALYSIS, 2024, 4 (11):