Quantum Wasserstein distance of order 1 between channels

被引:3
|
作者
Duvenhage, Rocco [1 ]
Mapaya, Mathumo [1 ]
机构
[1] Univ Pretoria, Dept Phys, ZA-0002 Pretoria, South Africa
基金
新加坡国家研究基金会;
关键词
Quantum optimal transport; quantum Wasserstein distance of order 1; quantum channels; composite systems; OPTIMAL MASS-TRANSPORT; MEAN-FIELD;
D O I
10.1142/S0219025723500066
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We set up a general theory leading to a quantum Wasserstein distance of order 1 between channels in an operator algebraic framework. This gives a metric on the set of channels from one composite system to another, which is deeply connected to reductions of the channels. The additivity and stability properties of this metric are studied.
引用
收藏
页数:36
相关论文
共 50 条
  • [1] The Quantum Wasserstein Distance of Order 1
    De Palma, Giacomo
    Marvian, Milad
    Trevisan, Dario
    Lloyd, Seth
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (10) : 6627 - 6643
  • [2] The Wasserstein Distance of Order 1 for Quantum Spin Systems on Infinite Lattices
    Giacomo De Palma
    Dario Trevisan
    Annales Henri Poincaré, 2023, 24 : 4237 - 4282
  • [3] The Wasserstein Distance of Order 1 for Quantum Spin Systems on Infinite Lattices
    De Palma, Giacomo
    Trevisan, Dario
    ANNALES HENRI POINCARE, 2023, 24 (12): : 4237 - 4282
  • [4] Quantum Wasserstein distance between unitary operations
    Qiu, Xinyu
    Chen, Lin
    Zhao, Li -Jun
    PHYSICAL REVIEW A, 2024, 110 (01)
  • [5] On quantum versions of the classical Wasserstein distance
    Agredo, J.
    Fagnola, F.
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC REPORTS, 2017, 89 (6-7): : 910 - 922
  • [6] Monotonicity of a quantum 2-Wasserstein distance
    Bistron, R.
    Eckstein, M.
    Zyczkowski, K.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (09)
  • [7] Order-preserving Wasserstein Distance for Sequence Matching
    Su, Bing
    Hua, Gang
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 2906 - 2914
  • [8] Approximation algorithms for 1-Wasserstein distance between persistence diagrams
    Chen, Samantha
    Wang, Yusu
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2025, 129
  • [10] The Gromov-Wasserstein Distance Between Spheres
    Arya, Shreya
    Auddy, Arnab
    Clark, Ranthony A.
    Lim, Sunhyuk
    Memoli, Facundo
    Packer, Daniel
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2024,