An Interface-Type Memristive Device for Artificial Synapse and Neuromorphic Computing

被引:22
|
作者
Kunwar, Sundar [1 ]
Jernigan, Zachary [1 ]
Hughes, Zach [1 ]
Somodi, Chase [1 ]
Saccone, Michael D. D. [2 ]
Caravelli, Francesco [2 ]
Roy, Pinku [1 ,4 ]
Zhang, Di [1 ]
Wang, Haiyan [3 ]
Jia, Quanxi [4 ]
MacManus-Driscoll, Judith L. L. [5 ]
Kenyon, Garrett [6 ]
Sornborger, Andrew [6 ]
Nie, Wanyi [1 ]
Chen, Aiping [1 ]
机构
[1] Los Alamos Natl Lab, Ctr Integrated Nanotechnol CINT, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, T 4, Los Alamos, NM 87545 USA
[3] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA
[4] Univ Buffalo, State Univ New York, Dept Mat Design & Innovat, Buffalo, NY 14260 USA
[5] Univ Cambridge, Dept Mat Sci & Met, 27 Charles Babbage Rd, Cambridge CB3 0FS, England
[6] Los Alamos Natl Lab, CCS 3, Los Alamos, NM 87545 USA
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
analog resistive switching; artificial synapse; interface-controlled memristive devices; neuromorphic computing; RESISTIVE SWITCHING BEHAVIORS; CIRCUITS; MEMORY; OXIDE; FILAMENTARY; ELECTRONICS; CHALLENGES; PLASTICITY; EFFICIENT; TERM;
D O I
10.1002/aisy.202300035
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Interface-type (IT) metal/oxide Schottky memristive devices have attracted considerable attention over filament-type (FT) devices for neuromorphic computing because of their uniform, filament-free, and analog resistive switching (RS) characteristics. The most recent IT devices are based on oxygen ions and vacancies movement to alter interfacial Schottky barrier parameters and thereby control RS properties. However, the reliability and stability of these devices have been significantly affected by the undesired diffusion of ionic species. Herein, a reliable interface-dominated memristive device is demonstrated using a simple Au/Nb-doped SrTiO3 (Nb:STO) Schottky structure. The Au/Nb:STO Schottky barrier modulation by charge trapping and detrapping is responsible for the analog resistive switching characteristics. Because of its interface-controlled RS, the proposed device shows low device-to-device, cell-to-cell, and cycle-to-cycle variability while maintaining high repeatability and stability during endurance and retention tests. Furthermore, the Au/Nb:STO IT memristive device exhibits versatile synaptic functions with an excellent uniformity, programmability, and reliability. A simulated artificial neural network with Au/Nb:STO synapses achieves a high recognition accuracy of 94.72% for large digit recognition from MNIST database. These results suggest that IT resistive switching can be potentially used for artificial synapses to build next-generation neuromorphic computing.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] An Opto-Electronic HfOx-Based Transparent Memristive Synapse for Neuromorphic Computing System
    Saleem, Aftab
    Kumar, Dayanand
    Wu, Facai
    Keong, Lai Boon
    Tseng, Tseung-Yuen
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2023, 70 (03) : 1351 - 1358
  • [32] Perspective on photonic memristive neuromorphic computing
    Elena Goi
    Qiming Zhang
    Xi Chen
    Haitao Luan
    Min Gu
    PhotoniX, 1
  • [33] Perspective on photonic memristive neuromorphic computing
    Goi, Elena
    Zhang, Qiming
    Chen, Xi
    Luan, Haitao
    Gu, Min
    PHOTONIX, 2020, 1 (01)
  • [34] Memristive and CMOS Devices for Neuromorphic Computing
    Milo, Valerio
    Malavena, Gerardo
    Compagnoni, Christian Monzio
    Ielmini, Daniele
    MATERIALS, 2020, 13 (01) : 166
  • [35] Adaptive SRM neuron based on NbO X memristive device for neuromorphic computing
    Huang, Jing-Nan
    Wang, Tong
    Huang, He-Ming
    Guo, Xin
    CHIP, 2022, 1 (02):
  • [36] Memristive Hydrophobic Nanopores for Neuromorphic Computing
    Paulo, Goncalo
    Di Muccio, Giovanni
    Sun, Ke
    Gubbiotti, Alberto
    della Rocca, Blasco Morozzo
    Maglia, Giovanni
    Chinappi, Mauro
    Giacomello, Alberto
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2023, 52 (SUPPL 1): : S178 - S178
  • [37] Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing
    Choi, Sanghyeon
    Yang, Jehyeon
    Wang, Gunuk
    ADVANCED MATERIALS, 2020, 32 (51)
  • [38] Biomimetic, Soft-Material Synapse for Neuromorphic Computing: from Device to Network
    Hasan, Md Sakib
    Schuman, Catherine D.
    Najem, Joseph S.
    Weiss, Ryan
    Skuda, Nicholas D.
    Belianinov, Alex
    Collier, C. Patrick
    Sarles, Stephen A.
    Rose, Garrett S.
    PROCEEDINGS OF THE 2018 IEEE 13TH DALLAS CIRCUITS AND SYSTEMS CONFERENCE (DCAS), 2018,
  • [39] Interface-type tunable oxygen ion dynamics for physical reservoir computing
    Zhuohui Liu
    Qinghua Zhang
    Donggang Xie
    Mingzhen Zhang
    Xinyan Li
    Hai Zhong
    Ge Li
    Meng He
    Dashan Shang
    Can Wang
    Lin Gu
    Guozhen Yang
    Kuijuan Jin
    Chen Ge
    Nature Communications, 14
  • [40] Artificial Optoelectronic Synapse with Nanolayered GaN/AlN Periodic Structure for Neuromorphic Computing
    Hua, Xiayang
    Zheng, Jiyuan
    Han, Xu
    Hao, Zhibiao
    Luo, Yi
    Sun, Changzheng
    Han, Yanjun
    Xiong, Bing
    Wang, Jian
    Li, Hongtao
    Gan, Lin
    Al Khalfioui, Mohamed
    Brault, Julien
    Wang, Lai
    ACS APPLIED NANO MATERIALS, 2023, 6 (10) : 8461 - 8467