An effective knowledge graph entity alignment model based on multiple information

被引:6
|
作者
Zhu, Beibei [1 ,3 ]
Bao, Tie [1 ,2 ,3 ]
Han, Ridong [1 ,3 ]
Cui, Hai [1 ,3 ]
Han, Jiayu [4 ]
Liu, Lu [1 ,2 ,3 ]
Peng, Tao [1 ,2 ,3 ]
机构
[1] Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Jilin, Peoples R China
[2] Jilin Univ, Coll Software, Changchun 130012, Jilin, Peoples R China
[3] Jilin Univ, Key Lab Symbol Computat & Knowledge Engn, Minist Educ, Changchun 130012, Jilin, Peoples R China
[4] Univ Washington, Dept Linguist, Seattle, WA 98195 USA
基金
中国国家自然科学基金;
关键词
Entity alignment; Knowledge graph; Structure; Semantic; String;
D O I
10.1016/j.neunet.2023.02.029
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Entity alignment refers to matching entities with the same realistic meaning in different knowledge graphs. The structure of a knowledge graph provides the global signal for entity alignment. But in the real world, a knowledge graph provides insufficient structural information in general. Moreover, the problem of knowledge graph heterogeneity is common. The semantic and string information can alleviate the problems caused by the sparse and heterogeneous nature of knowledge graphs, yet both of them have not been fully utilized by most existing work. Therefore, we propose an entity alignment model based on multiple information (EAMI), which employs structural, semantic and string information. EAMI learns the structural representation of a knowledge graph by using multi-layer graph convolutional networks. To acquire more accurate entity vector representation, we incorporate the attribute semantic representation into the structural representation. In addition, to further improve entity alignment, we study the entity name string information. There is no training required to calculate the similarity of entity names. Our model is tested on publicly available cross-lingual datasets and cross-resource datasets, and the experimental results demonstrate the effectiveness of our model.(c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页码:83 / 98
页数:16
相关论文
共 50 条
  • [21] Multi-modal Graph Convolutional Network for Knowledge Graph Entity Alignment
    You, Yinghui
    Wei, Yuyang
    Zhang, Yanlong
    Chen, Wei
    Zhao, Lei
    WEB AND BIG DATA, PT I, APWEB-WAIM 2023, 2024, 14331 : 142 - 157
  • [22] Entity Alignment for Cross-lingual Knowledge Graph with Graph Convolutional Networks
    Xiong, Fan
    Gao, Jianliang
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 6480 - 6481
  • [23] Adaptive Entity Alignment for Cross-Lingual Knowledge Graph
    Zhang, Yuanming
    Gao, Tianyu
    Lu, Jiawei
    Cheng, Zhenbo
    Xiao, Gang
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, KSEM 2021, PT II, 2021, 12816 : 474 - 487
  • [24] Knowledge Graph Entity Alignment Using Relation Structural Similarity
    Peng, Yanhui
    Zhang, Jing
    Zhou, Cangqi
    Meng, Shunmei
    JOURNAL OF DATABASE MANAGEMENT, 2022, 33 (01)
  • [25] MMEA: Entity Alignment for Multi-modal Knowledge Graph
    Chen, Liyi
    Li, Zhi
    Wang, Yijun
    Xu, Tong
    Wang, Zhefeng
    Chen, Enhong
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT (KSEM 2020), PT I, 2020, 12274 : 134 - 147
  • [26] Temporal Knowledge Graph Entity Alignment via Representation Learning
    Song, Xiuting
    Bai, Luyi
    Liu, Rongke
    Zhang, Han
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2022, PT II, 2022, : 391 - 406
  • [27] Dual Relation-Aware Entity Alignment for Knowledge Graph
    Zhang, Xin
    Liu, Yu
    Zhao, Zhehuan
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [28] CyberEA: An Efficient Entity Alignment Framework for Cybersecurity Knowledge Graph
    Huang, Yue
    Guo, Yongyan
    Huang, Cheng
    SECURITY AND PRIVACY IN COMMUNICATION NETWORKS, PT I, SECURECOMM 2023, 2025, 567 : 41 - 62
  • [29] Knowledge graph embedding methods for entity alignment: experimental review
    Nikolaos Fanourakis
    Vasilis Efthymiou
    Dimitris Kotzinos
    Vassilis Christophides
    Data Mining and Knowledge Discovery, 2023, 37 (5) : 2070 - 2137
  • [30] Multi-view Knowledge Graph Embedding for Entity Alignment
    Zhang, Qingheng
    Sun, Zequn
    Hu, Wei
    Chen, Muhao
    Guo, Lingbing
    Qu, Yuzhong
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 5429 - 5435