Object Detection for Hazardous Material Vehicles Based on Improved YOLOv5 Algorithm

被引:10
|
作者
Zhu, Pengcheng [1 ]
Chen, Bolun [1 ,2 ]
Liu, Bushi [1 ]
Qi, Zifan [1 ]
Wang, Shanshan [1 ]
Wang, Ling [1 ]
机构
[1] Huaiyin Inst Technol, Fac Comp & Software Engn, Huaian 223003, Peoples R China
[2] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland
基金
中国国家自然科学基金;
关键词
hazardous material vehicles; object detection; YOLOv5; attention mechanism; NETWORK;
D O I
10.3390/electronics12051257
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hazardous material vehicles are a non-negligible mobile source of danger in transport and pose a significant safety risk. At present, the current detection technology is well developed, but it also faces a series of challenges such as a significant amount of computational effort and unsatisfactory accuracy. To address these issues, this paper proposes a method based on YOLOv5 to improve the detection accuracy of hazardous material vehicles. The method introduces an attention module in the YOLOv5 backbone network as well as the neck network to achieve the purpose of extracting better features by assigning different weights to different parts of the feature map to suppress non-critical information. In order to enhance the fusion capability of the model under different sized feature maps, the SPPF (Spatial Pyramid Pooling-Fast) layer in the network is replaced by the SPPCSPC (Spatial Pyramid Pooling Cross Stage Partial Conv) layer. In addition, the bounding box loss function was replaced with the SIoU loss function in order to effectively speed up the bounding box regression and enhance the localization accuracy of the model. Experiments on the dataset show that the improved model has effectively improved the detection accuracy of hazardous chemical vehicles compared with the original model. Our model is of great significance for achieving traffic accident monitoring and effective emergency rescue.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] OBJECT DETECTION IN SECURITY SCENE BASED ON IMPROVED YOLOv5
    Lv, Kunwei
    Wu, Ruobing
    Xiao, Zhiren
    Lan, Ping
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES C-ELECTRICAL ENGINEERING AND COMPUTER SCIENCE, 2024, 86 (04): : 223 - 240
  • [22] Object Detection of Individual Mangrove Based on Improved YOLOv5
    Ma Yongkang
    Liu Hua
    Ling Chengxing
    Zhao Feng
    Jiang Yi
    Zhang Yutong
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (18)
  • [23] Research on improved algorithm for helmet detection based on YOLOv5
    Shan, Chun
    Liu, Hongming
    Yu, Yu
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [24] Fabric defect detection algorithm based on improved YOLOv5
    Li, Feng
    Xiao, Kang
    Hu, Zhengpeng
    Zhang, Guozheng
    VISUAL COMPUTER, 2024, 40 (04): : 2309 - 2324
  • [25] An insulator target detection algorithm based on improved YOLOv5
    Zeng, Bing
    Zhou, Zhihao
    Zhou, Yu
    He, Dilin
    Liao, Zhanpeng
    Jin, Zihan
    Zhou, Yulu
    Yi, Kexin
    Xie, Yunmin
    Zhang, Wenhua
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [26] Vehicle And Pedestrian Detection Algorithm Based on Improved YOLOv5
    Sun, Jiuhan
    Wang, Zhifeng
    IAENG International Journal of Computer Science, 2023, 50 (04)
  • [27] An Improved Distraction Behavior Detection Algorithm Based on YOLOv5
    Zhou, Keke
    Zheng, Guoqiang
    Zhai, Huihui
    Lv, Xiangshuai
    Zhang, Weizhen
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 81 (02): : 2571 - 2585
  • [28] Detection of Cigar Defect Based on the Improved YOLOv5 Algorithm
    Yang, Xinan
    Gao, Sen
    Xia, Chen
    Zhang, Bo
    Chen, Rui
    Gao, Jie
    Zhu, Wenkui
    2024 IEEE 4TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND ARTIFICIAL INTELLIGENCE, SEAI 2024, 2024, : 99 - 106
  • [29] Ship Target Detection Algorithm Based on Improved YOLOv5
    Zhou, Junchi
    Jiang, Ping
    Zou, Airu
    Chen, Xinglin
    Hu, Wenwu
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2021, 9 (08)
  • [30] Research on improved algorithm for helmet detection based on YOLOv5
    Chun Shan
    HongMing Liu
    Yu Yu
    Scientific Reports, 13