Modeling Surface Water-Groundwater Interactions: Evidence from Borkena Catchment, Awash River Basin, Ethiopia

被引:5
|
作者
Gobezie, Wallelegn Jene [1 ]
Teferi, Ermias [2 ,3 ]
Dile, Yihun T. [4 ]
Bayabil, Haimanote K. [5 ]
Ayele, Gebiaw T. [6 ,7 ]
Ebrahim, Girma Y. [8 ]
机构
[1] Addis Ababa Univ, Ethiopian Inst Water Resources, POB 1176, Addis Ababa, Ethiopia
[2] Addis Ababa Univ, Ctr Envirom & Dev Studies, POB 1176, Addis Ababa, Ethiopia
[3] Addis Ababa Univ, Water & Land Resource Ctr WLRC, POB 3880, Addis Ababa, Ethiopia
[4] Texas A&M Univ, Spatial Sci Lab Dev Ecosyst Sci & Management, College Stn, TX 77843 USA
[5] Univ Florida, Inst Food & Agr Sci, Trop Res & Educ Ctr, Agr & Biol Engn, Homestead, FL 33031 USA
[6] Griffith Univ, Australia River Inst, Nathan, Qld 4111, Australia
[7] Griffith Univ, Sch Engn, Nathan, Qld 4111, Australia
[8] Int Water Management Inst, POB 5689, Addis Ababa, Ethiopia
关键词
Borkena Catchment; surface water; groundwater; recharge; modeling; SWAT-MODFLOW; QUALITY; CALIBRATION; HYDROLOGY;
D O I
10.3390/hydrology10020042
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
The availability of sufficient water resources is critical for sustainable social and economic development globally. However, recurrent drought has been a precursor to inadequate water supply in the case of Borkena Catchment, Awash River Basin, Ethiopia. To support the conjunctive use and management of surface water and groundwater in Borkena Catchment, an integrated model was developed using the SWAT-MODFLOW model. The model was designed to operate on a monthly time scale. The change in the water balance obtained from the SWAT-MODFLOW model provides a quantitative means to assess the effect of the climate variability and changes, as well as the impact of human activities, on water resources. To advance the understanding at the regional and local scales, surface water-groundwater interactions in the Borkena Catchment geochemical information and piezometer maps were integrated. The results show that the groundwater recharge in the study area is approximately 122 mm/a. The surface water-groundwater interaction results show that the areas around Harbu and Dessie are characterized as losing rivers, while the areas around Kemisse-Chefa and the highlands of Kutaber, where the Borkena River originates, are characterized as gaining rivers. A geochemical analysis indicated that there is an inter-basin groundwater transfer from the Abbay to the Awash basin. The integrated model generated key temporal and spatial information that is useful for the sustainable conjunctive management of surface and groundwater in Borkena Catchment for climate resilience in the face of climate variability and increasing demand.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Evaluating Surface Water-groundwater Interactions in Consequence of Changes in Climate and Groundwater Extraction
    Chanchai Petpongpan
    Chaiwat Ekkawatpanit
    Ryan T. Bailey
    Duangrudee Kositgittiwong
    Phayom Saraphirom
    Water Resources Management, 2022, 36 : 5767 - 5783
  • [42] Surface water-groundwater interactions in semiarid drainages of the American southwest
    Newman, Brent D.
    Vivoni, Enrique R.
    Groffman, Armand R.
    HYDROLOGICAL PROCESSES, 2006, 20 (15) : 3371 - 3394
  • [43] An Integrated Modeling Approach to Study the Surface Water-Groundwater Interactions and Influence of Temporal Damping Effects on the Hydrological Cycle in the Miho Catchment in South Korea
    Joo, Jaewon
    Tian, Yong
    Zheng, Chunmiao
    Zheng, Yi
    Sun, Zan
    Zhang, Aijing
    Chang, Hyungjoon
    WATER, 2018, 10 (11)
  • [44] Groundwater fauna as an indicator of surface water-groundwater interactions at a riverbank filtration site
    Berkhoff, S. E.
    Bork, Joerg
    Hahn, Hans Juergen
    GRUNDWASSER, 2009, 14 (01) : 3 - 20
  • [45] Evaluating Surface Water-groundwater Interactions in Consequence of Changes in Climate and Groundwater Extraction
    Petpongpan, Chanchai
    Ekkawatpanit, Chaiwat
    Bailey, Ryan T.
    Kositgittiwong, Duangrudee
    Saraphirom, Phayom
    WATER RESOURCES MANAGEMENT, 2022, 36 (14) : 5767 - 5783
  • [46] Managing surface water-groundwater to restore fall flows in the Cosumnes River
    Fleckenstein, J
    Anderson, M
    Fogg, G
    Mount, J
    JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT, 2004, 130 (04) : 301 - 310
  • [47] Modeling Surface Water-Groundwater Interaction with MODFLOW: Some Considerations
    Brunner, Philip
    Simmons, Craig T.
    Cook, Peter G.
    Therrien, Rene
    GROUND WATER, 2010, 48 (02) : 174 - 180
  • [48] Modeling Climate Change Impact on the Hydrology of Keleta Watershed in the Awash River Basin, Ethiopia
    Bekele, Daniel
    Alamirew, Tena
    Kebede, Asfaw
    Zeleke, Gete
    Melesse, Assefa M.
    ENVIRONMENTAL MODELING & ASSESSMENT, 2019, 24 (01) : 95 - 107
  • [49] Numerical simulations of runoff generation with surface water-groundwater interactions in the Alzette river alluvial plain (Luxembourg)
    Fenicia, F
    Zhang, GP
    Rientjes, T
    Hoffmann, L
    Pfister, L
    Savenije, HHG
    PHYSICS AND CHEMISTRY OF THE EARTH, 2005, 30 (4-5) : 277 - 284
  • [50] Development of a visualization tool for integrated surface water-groundwater modeling
    Tian, Yong
    Zheng, Yi
    Zheng, Chunmiao
    COMPUTERS & GEOSCIENCES, 2016, 86 : 1 - 14