Nash-type equilibria for systems of partially potential nonlinear equations

被引:2
|
作者
Beldzinski, Michal [1 ]
Galewski, Marek [1 ]
Barilla, David [2 ]
机构
[1] Lodz Univ Technol, Inst Math, Al Politech 8, PL-93590 Lodz, Poland
[2] Univ Messina, Dept Econ, Messina, Italy
关键词
Dirichlet problem; Browder-Minty theorem; Nash-type equilibrium; non-potential system;
D O I
10.1002/mma.8739
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of a Nash-type equilibrium for a non-potential nonlinear system by combining variational methods with the monotonicity approach. The advance over existing research is that we can consider systems of Dirichlet problems in which the operator is not necessarily linear.
引用
收藏
页码:11830 / 11841
页数:12
相关论文
共 50 条
  • [41] Ostrowski type methods for solving systems of nonlinear equations
    Grau-Sanchez, Miquel
    Grau, Angela
    Noguera, Miquel
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (06) : 2377 - 2385
  • [42] NONLINEAR INTEGRAL-EQUATIONS AND SYSTEMS OF HAMMERSTEIN TYPE
    BREZIS, H
    BROWDER, FE
    ADVANCES IN MATHEMATICS, 1975, 18 (02) : 115 - 147
  • [43] On a Moser–Steffensen Type Method for Nonlinear Systems of Equations
    S. Amat
    M. Grau-Sanchez
    M. A. Hernández-Verón
    M. J. Rubio
    Mediterranean Journal of Mathematics, 2016, 13 : 4109 - 4128
  • [44] Numerical methods for Nash equilibria in multiobjective control of partial differential equations
    Ramos, AM
    ANALYSIS AND OPTIMIZATION OF DIFFERENTIAL SYSTEMS, 2003, 121 : 333 - 344
  • [45] Computing Nash Equilibria in Potential Games with Private Uncoupled Constraints
    Patris, Nikolas
    Stavroulakis, Stelios
    Kalogiannis, Fivos
    Zhang, Rose
    Panageas, Ioannis
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 9, 2024, : 9874 - 9882
  • [46] Nonlinear Integral Equations with Potential-Type Kernels on a Segment
    Askhabov S.N.
    Journal of Mathematical Sciences, 2018, 235 (4) : 375 - 391
  • [47] On type I blowup of some nonlinear heat equations with a potential
    Jiang, Gui-Chun
    Wang, Yu-Ying
    Zheng, Gao-Feng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 543 (02)
  • [48] NONLINEAR EQUATIONS WITH WEIGHTED POTENTIAL TYPE OPERATORS IN LEBESGUE SPACES
    Askhabov, S. N.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2011, (04): : 160 - 164
  • [49] On type I blowup of some nonlinear heat equations with a potential
    Jiang, Gui-Chun
    Wang, Yu-Ying
    Zheng, Gao-Feng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 85
  • [50] 2 METHODS OF RESOLVING A SYSTEM OF NONLINEAR EQUATIONS OF A POTENTIAL TYPE
    SIMEONOV, SV
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1986, 39 (11): : 33 - 36