An interpretable deep learning model for identifying the morphological characteristics of dMMR/MSI-H gastric cancer

被引:1
|
作者
Zheng, Xueyi [1 ]
Jing, Bingzhong [2 ]
Zhao, Zihan [1 ]
Wang, Ruixuan [3 ]
Zhang, Xinke [1 ]
Chen, Haohua [2 ]
Wu, Shuyang [1 ]
Sun, Yan [4 ]
Zhang, Jiangyu [5 ]
Wu, Hongmei [6 ]
Huang, Dan [7 ]
Zhu, Wenbiao [8 ]
Chen, Jianning [9 ]
Cao, Qinghua [10 ]
Zeng, Hong [11 ]
Duan, Jinling [1 ]
Luo, Yuanliang [1 ]
Li, Zhicheng [1 ]
Lin, Wuhao [1 ]
Nie, Runcong [1 ,12 ]
Deng, Yishu [2 ]
Yun, Jingping [1 ]
Li, Chaofeng [2 ]
Xie, Dan [1 ]
Cai, Muyan [1 ]
Nie, Runcong [1 ,12 ]
机构
[1] Sun Yat Sen Univ, Guangdong Prov Clin Res Ctr Canc, Dept Pathol, Canc Ctr,State Key Lab Oncol South China, Guangzhou 510060, Peoples R China
[2] Sun Yat Sen Univ, Guangdong Prov Clin Res Ctr Canc, State Key Lab Oncol South China, Canc Ctr,Artificial Intelligence Lab, Guangzhou 510060, Peoples R China
[3] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China
[4] Tianjin Med Univ Canc Inst & Hosp, Dept Pathol, Tianjin 300000, Peoples R China
[5] Guangzhou Med Univ, Affiliated Canc Hosp & Inst, Dept Pathol, Guangzhou 510095, Peoples R China
[6] Guangdong Prov Peoples Hosp, Guangdong Acad Med Sci, Dept Pathol, Guangzhou 510080, Peoples R China
[7] Fudan Univ, Shanghai Canc Ctr, Dept Pathol, Shanghai 200032, Peoples R China
[8] Shantou Univ, Meizhou Peoples Hosp, Meizhou Clin Sch, Med Coll,Dept Pathol, Meizhou 514011, Peoples R China
[9] Sun Yat Sen Univ, Affiliated Hosp 3, Dept Pathol, Guangzhou 510635, Peoples R China
[10] Sun Yat Sen Univ, Affiliated Hosp 1, Dept Pathol, Guangzhou 510080, Peoples R China
[11] Sun Yat Sen Univ, Sun Yat Sen Mem Hosp, Dept Pathol, Guangzhou 510120, Peoples R China
[12] Sun Yat Sen Univ, Guangdong Prov Clin Res Ctr Canc, State Key Lab Oncol South China, Canc Ctr,Dept Dept Gastr Surg, Guangzhou 510060, Peoples R China
关键词
Cancer; Diagnostics; Machine learning; Pathology;
D O I
10.1016/j.isci.2024.109243
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accurate tumor diagnosis by pathologists relies on identifying specific morphological characteristics. However, summarizing these unique morphological features in tumor classifications can be challenging. Although deep learning models have been extensively studied for tumor classification, their indirect and subjective interpretation obstructs pathologists from comprehending the model and discerning the morphological features accountable for classifications. In this study, we introduce a new approach utilizing Style Generative Adversarial Networks, which enables a direct interpretation of deep learning models to detect significant morphological characteristics within datasets representing patients with deficient mismatch repair/microsatellite instability -high gastric cancer. Our approach effectively identifies distinct morphological features crucial for tumor classification, offering valuable insights for pathologists to enhance diagnostic accuracy and foster professional growth.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Nonoperative Management of dMMR/MSI-H Colorectal Cancer following Neoadjuvant Immunotherapy: A Narrative Review
    Xiao, Binyi
    Yu, Jiehai
    Ding, Pei-Rong
    CLINICS IN COLON AND RECTAL SURGERY, 2023, 36 (06) : 378 - 384
  • [22] High-Risk Features Are Prognostic in dMMR/MSI-H Stage II Colon Cancer
    Mohamed, Amr
    Jiang, Renjian
    Philip, Philip A.
    Diab, Maria
    Behera, Madhusmita
    Wu, Christina
    Alese, Olatunji
    Shaib, Walid L.
    Gaines, Tyra M.
    Balch, Glen G.
    El-Rayes, Bassel F.
    Akce, Mehmet
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [23] Neoadjuvant envafolimab in a patient with MSI-H/dMMR colon cancer: a case report and literature review
    Chen, Ziwei
    Zhou, Jingrui
    Chen, Weimin
    Wu, Tao
    Lian, Ke
    Shen, Tao
    IMMUNOTHERAPY, 2024, 16 (10) : 649 - 657
  • [24] Good Tumor Response to Chemoradioimmunotherapy in dMMR/MSI-H Advanced Colorectal Cancer: A Case Series
    Zhou, Chengjing
    Jiang, Ting
    Xiao, Yajie
    Wang, Qiaoxuan
    Zeng, Zhifan
    Cai, Peiqiang
    Zhao, Yongtian
    Zhao, Zhikun
    Wu, Dongfang
    Lin, Hanqing
    Sun, Chao
    Zhang, Rong
    Xiao, Weiwei
    Gao, Yuanhong
    FRONTIERS IN IMMUNOLOGY, 2021, 12
  • [25] Efficacy and safety of preoperative immunotherapy alone followed by surgery in the treatment of advanced gastric cancer with MSI-H/dMMR or EBV-positive
    Lei, Xiaokang
    Wang, Yinkui
    Shan, Fei
    Li, Shuangxi
    Jia, Yongning
    Miao, Rulin
    Xue, Kan
    Li, Zhemin
    Ji, Jiafu
    Li, Ziyu
    JOURNAL OF THE CHINESE MEDICAL ASSOCIATION, 2023, 86 (08) : 717 - 724
  • [26] Neoadjuvant Immunotherapy for MSI-H/dMMR Locally Advanced Colorectal Cancer: New Strategies and Unveiled Opportunities
    Zhang, Xuan
    Wu, Tao
    Cai, Xinyi
    Dong, Jianhua
    Xia, Cuifeng
    Zhou, Yongchun
    Ding, Rong
    Yang, Renfang
    Tan, Jing
    Zhang, Lijuan
    Zhang, Ya
    Wang, Yuqin
    Dong, Chao
    Li, Yunfeng
    FRONTIERS IN IMMUNOLOGY, 2022, 13
  • [27] WRN dependency in dMMR/MSI-H endometrial cancer: Clinical perspectives of a novel synthetic lethality strategy
    Fuca, Giovanni
    Dell'Acqua, Cristian
    Peruffo, Beatrice
    Lalli, Gloria
    Sabatucci, Ilaria
    Paderno, Mariachiara
    Di Martino, Giampaolo
    Signorelli, Mauro
    Maruccio, Matteo
    Martinelli, Fabio
    Lorusso, Domenica
    GYNECOLOGIC ONCOLOGY, 2025, 195 : 12 - 15
  • [28] Clinicopathological and genomic characteristics of DNA Mismatch Repair-Deficient (dMMR) and microsatellite instability-high (MSI-H) resected gastric adenocarcinoma
    Zhou, J.
    Liang, B.
    Yin, M.
    Zhang, H.
    Liu, F.
    Dong, L.
    Zhang, B.
    Xu, Y.
    ANNALS OF ONCOLOGY, 2020, 31 : S921 - S922
  • [29] Neoadjuvant immunotherapy for dMMR/MSI-H locally advanced rectal cancer: The future new standard approach?
    Cabezon-Gutierrez, Luis
    Custodio-Cabello, Sara
    Palka-Kotlowska, Magda
    Diaz-Perez, David
    Mateos-Dominguez, Maria
    Galindo-Jara, Pablo
    EJSO, 2023, 49 (02): : 323 - 328
  • [30] Heterogeneity of MSI-H gastric cancer identifies a subtype with worse survival
    Yang, Yanmei
    Shi, Zhong
    Bai, Rui
    Hu, Wangxiong
    JOURNAL OF MEDICAL GENETICS, 2021, 58 (01) : 12 - 19