An interpretable deep learning model for identifying the morphological characteristics of dMMR/MSI-H gastric cancer

被引:1
|
作者
Zheng, Xueyi [1 ]
Jing, Bingzhong [2 ]
Zhao, Zihan [1 ]
Wang, Ruixuan [3 ]
Zhang, Xinke [1 ]
Chen, Haohua [2 ]
Wu, Shuyang [1 ]
Sun, Yan [4 ]
Zhang, Jiangyu [5 ]
Wu, Hongmei [6 ]
Huang, Dan [7 ]
Zhu, Wenbiao [8 ]
Chen, Jianning [9 ]
Cao, Qinghua [10 ]
Zeng, Hong [11 ]
Duan, Jinling [1 ]
Luo, Yuanliang [1 ]
Li, Zhicheng [1 ]
Lin, Wuhao [1 ]
Nie, Runcong [1 ,12 ]
Deng, Yishu [2 ]
Yun, Jingping [1 ]
Li, Chaofeng [2 ]
Xie, Dan [1 ]
Cai, Muyan [1 ]
Nie, Runcong [1 ,12 ]
机构
[1] Sun Yat Sen Univ, Guangdong Prov Clin Res Ctr Canc, Dept Pathol, Canc Ctr,State Key Lab Oncol South China, Guangzhou 510060, Peoples R China
[2] Sun Yat Sen Univ, Guangdong Prov Clin Res Ctr Canc, State Key Lab Oncol South China, Canc Ctr,Artificial Intelligence Lab, Guangzhou 510060, Peoples R China
[3] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China
[4] Tianjin Med Univ Canc Inst & Hosp, Dept Pathol, Tianjin 300000, Peoples R China
[5] Guangzhou Med Univ, Affiliated Canc Hosp & Inst, Dept Pathol, Guangzhou 510095, Peoples R China
[6] Guangdong Prov Peoples Hosp, Guangdong Acad Med Sci, Dept Pathol, Guangzhou 510080, Peoples R China
[7] Fudan Univ, Shanghai Canc Ctr, Dept Pathol, Shanghai 200032, Peoples R China
[8] Shantou Univ, Meizhou Peoples Hosp, Meizhou Clin Sch, Med Coll,Dept Pathol, Meizhou 514011, Peoples R China
[9] Sun Yat Sen Univ, Affiliated Hosp 3, Dept Pathol, Guangzhou 510635, Peoples R China
[10] Sun Yat Sen Univ, Affiliated Hosp 1, Dept Pathol, Guangzhou 510080, Peoples R China
[11] Sun Yat Sen Univ, Sun Yat Sen Mem Hosp, Dept Pathol, Guangzhou 510120, Peoples R China
[12] Sun Yat Sen Univ, Guangdong Prov Clin Res Ctr Canc, State Key Lab Oncol South China, Canc Ctr,Dept Dept Gastr Surg, Guangzhou 510060, Peoples R China
关键词
Cancer; Diagnostics; Machine learning; Pathology;
D O I
10.1016/j.isci.2024.109243
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accurate tumor diagnosis by pathologists relies on identifying specific morphological characteristics. However, summarizing these unique morphological features in tumor classifications can be challenging. Although deep learning models have been extensively studied for tumor classification, their indirect and subjective interpretation obstructs pathologists from comprehending the model and discerning the morphological features accountable for classifications. In this study, we introduce a new approach utilizing Style Generative Adversarial Networks, which enables a direct interpretation of deep learning models to detect significant morphological characteristics within datasets representing patients with deficient mismatch repair/microsatellite instability -high gastric cancer. Our approach effectively identifies distinct morphological features crucial for tumor classification, offering valuable insights for pathologists to enhance diagnostic accuracy and foster professional growth.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Genomic alteration of Chinese dMMR/MSI-H gastric cancer
    Wei, Jia
    Wang, Jian
    Fan, Xiangshan
    Wang, Yue
    Fu, Yao
    Wang, Kai
    Wu, Nandie
    Liu, Qin
    Yang, Yang
    Wang, Weifeng
    Liu, Baorui
    CANCER RESEARCH, 2019, 79 (13)
  • [2] The clinical and genomic characteristics of MSI-h/dMMR lung cancer.
    Qin, Jianwen
    Shi, Dongsheng
    Yin, Yan
    Bin Liu
    Wang, Lei
    Sun, Tingting
    Zhang, Qin
    Qi, Chuang
    JOURNAL OF CLINICAL ONCOLOGY, 2022, 40 (16)
  • [3] Opportunities and challenges of immunotherapy for dMMR/MSI-H colorectal cancer
    Qi Zhang
    Jian Li
    Lin Shen
    Yongsheng Li
    Xicheng Wang
    Cancer Biology & Medicine, 2023, 20 (10) : 706 - 712
  • [4] Immunotherapy Promising for Metastatic MSI-H/dMMR Colorectal Cancer
    Yarden, Ronit
    ONCOLOGY-NEW YORK, 2019, 33 (05): : 179 - 179
  • [5] Opportunities and challenges of immunotherapy for dMMR/ MSI-H colorectal cancer
    Zhang, Qi
    Li, Jian
    Shen, Lin
    Li, Yongsheng
    Wang, Xicheng
    CANCER BIOLOGY & MEDICINE, 2023, 20 (10) : 706 - 712
  • [6] Opportunities and challenges of immunotherapy for dMMR/MSI-H colorectal cancer
    Qi Zhang
    Jian Li
    Lin Shen
    Yongsheng Li
    Xicheng Wang
    Cancer Biology & Medicine, 2023, (10) : 706 - 712
  • [7] MSI-H/dMMR and cancer immunotherapy: current state and future implications
    Rizzo, Alessandro
    Ricci, Angela Dalia
    Gadaleta-Caldarola, Gennaro
    EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT, 2021, 6 (06): : 345 - 347
  • [8] Duration of immunotherapy in dMMR/MSI-H metastatic colorectal cancer patients
    Margalit, Ofer
    Stemmer, Amos
    Chapin, William J.
    Shacham-Shmueli, Einat
    Kopetz, Scott
    Andre, Thierry
    Overman, Michael J.
    Pietrantonio, Filippo
    Boursi, Ben
    EUROPEAN JOURNAL OF CANCER, 2024, 212
  • [9] Heterogeneity and Adjuvant Therapeutic Approaches in MSI-H/dMMR Resectable Gastric Cancer: Emerging Trends in Immunotherapy
    Wu, Hui
    Ma, Wenyuan
    Jiang, Congfa
    Li, Ning
    Xu, Xin
    Ding, Yongfeng
    Jiang, Haiping
    ANNALS OF SURGICAL ONCOLOGY, 2023, 30 (13) : 8572 - 8587
  • [10] Heterogeneity and Adjuvant Therapeutic Approaches in MSI-H/dMMR Resectable Gastric Cancer: Emerging Trends in Immunotherapy
    Hui Wu
    Wenyuan Ma
    Congfa Jiang
    Ning Li
    Xin Xu
    Yongfeng Ding
    Haiping Jiang
    Annals of Surgical Oncology, 2023, 30 : 8572 - 8587