Norm inequalities for product of matrices

被引:3
|
作者
Al-Natoor, Ahmad [1 ]
机构
[1] Univ Jordan, Fac Sci, Dept Math, Amman 11942, Jordan
关键词
Spectral norm; Unitarily invariant norm; Numerical radius; Inequality;
D O I
10.1007/s44146-024-00121-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove some new norm inequalities for product of matrices. Among other results, we prove that if A and B are nx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}n complex matrices, then AB*2 <= min(B*BA*A,A*AB*B).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left| \left| \left| \text { }\left| AB<^>{*}\right| <^>{2}\right| \right| \right| \le \min (\left| \left| \left| B<^>{*}B\right| \right| \right| \left\| A<^>{*}A\right\| ,\left| \left| \left| A<^>{*}A\right| \right| \right| \left\| B<^>{*}B\right\| ). \end{aligned}$$\end{document}In particular, if center dot=center dot,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| \left| \left| \cdot \right| \right| \right| =\left\| \cdot \right\| ,$$\end{document} then AB*2 <= A*AB*B,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\| AB<^>{*}\right\| <^>{2}\le \left\| A<^>{*}A\right\| \left\| B<^>{*}B\right\| , \end{aligned}$$\end{document}which is known as the Cauchy-Schwarz inequality. Also, we prove that if A and B are nx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}n complex matrices, then AB*2 <= wA*AB*B,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \text { }\left\| AB<^>{*}\right\| <^>{2}\le w\left( A<^>{*}AB<^>{*}B\right) , \end{aligned}$$\end{document}which is a refinement of the above Cauchy-Schwarz inequality. Here center dot,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left| \left| \left| \cdot \right| \right| \right| ,$$\end{document}center dot,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\| \cdot \right\| ,$$\end{document} and w(center dot)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w(\cdot )$$\end{document} denote any unitarily invariant norm, the spectral norm, and the numerical radius of matrices, respectively.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Unitarily invariant norm inequalities for positive semidefinite matrices
    Al-Natoor, Ahmad
    Benzamia, Sakina
    Kittaneh, Fuad
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 633 : 303 - 315
  • [42] Some inequalities for the Hadamard product and the Fan product of matrices
    Huang, Rong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) : 1551 - 1559
  • [43] NORM INEQUALITIES FOR ACCRETIVE-DISSIPATIVE BLOCK MATRICES
    Alrimawi, Fadi
    Al-Khlyleh, Mohammad
    Abushaheen, Fuad A.
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2020, 26 (03): : 201 - 215
  • [44] Norm inequalities for accretive-dissipative operator matrices
    Lin, Minghua
    Zhou, Duanmei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 407 (02) : 436 - 442
  • [45] GENERALIZATION OF SOME UNITARILY INVARIANT NORM INEQUALITIES FOR MATRICES
    Al-Natoor, Ahmad
    Amleh, Mohammad A.
    Abughazaleh, Baha'
    Burqan, Aliaa
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2023, 17 (02): : 581 - 589
  • [46] New Norm Equalities and Inequalities for Hankel Operator Matrices
    Bani-Domi, Watheq
    Kittaneh, Fuad
    Shatnawi, Mutaz
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2021, 15 (06)
  • [47] Singular value and norm inequalities for positive semidefinite matrices
    Al-Natoor, Ahmad
    Kittaneh, Fuad
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (19): : 4498 - 4507
  • [48] Norm equalities and inequalities for three circulant operator matrices
    Zhao Lin Jiang
    Yun Cheng Qiao
    Shu Dong Wang
    Acta Mathematica Sinica, English Series, 2017, 33 : 571 - 590
  • [49] NEW NORM EQUALITIES AND INEQUALITIES FOR CERTAIN OPERATOR MATRICES
    Bani-Domi, Watheq
    Kittaneh, Fuad
    Shatnawi, Mutaz
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (03): : 1041 - 1050
  • [50] Norm inequalities related to the arithmetic–geometric mean inequalities for positive semidefinite matrices
    Mostafa Hayajneh
    Saja Hayajneh
    Fuad Kittaneh
    Positivity, 2018, 22 : 1311 - 1324