Norm inequalities for product of matrices

被引:3
|
作者
Al-Natoor, Ahmad [1 ]
机构
[1] Univ Jordan, Fac Sci, Dept Math, Amman 11942, Jordan
关键词
Spectral norm; Unitarily invariant norm; Numerical radius; Inequality;
D O I
10.1007/s44146-024-00121-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove some new norm inequalities for product of matrices. Among other results, we prove that if A and B are nx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}n complex matrices, then AB*2 <= min(B*BA*A,A*AB*B).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left| \left| \left| \text { }\left| AB<^>{*}\right| <^>{2}\right| \right| \right| \le \min (\left| \left| \left| B<^>{*}B\right| \right| \right| \left\| A<^>{*}A\right\| ,\left| \left| \left| A<^>{*}A\right| \right| \right| \left\| B<^>{*}B\right\| ). \end{aligned}$$\end{document}In particular, if center dot=center dot,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| \left| \left| \cdot \right| \right| \right| =\left\| \cdot \right\| ,$$\end{document} then AB*2 <= A*AB*B,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\| AB<^>{*}\right\| <^>{2}\le \left\| A<^>{*}A\right\| \left\| B<^>{*}B\right\| , \end{aligned}$$\end{document}which is known as the Cauchy-Schwarz inequality. Also, we prove that if A and B are nx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}n complex matrices, then AB*2 <= wA*AB*B,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \text { }\left\| AB<^>{*}\right\| <^>{2}\le w\left( A<^>{*}AB<^>{*}B\right) , \end{aligned}$$\end{document}which is a refinement of the above Cauchy-Schwarz inequality. Here center dot,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left| \left| \left| \cdot \right| \right| \right| ,$$\end{document}center dot,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\| \cdot \right\| ,$$\end{document} and w(center dot)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w(\cdot )$$\end{document} denote any unitarily invariant norm, the spectral norm, and the numerical radius of matrices, respectively.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Norm inequalities for functions of matrices
    Al-Natoor, Ahmad
    HELIYON, 2024, 10 (09)
  • [2] Norm equalities and inequalities for operator matrices
    Bani-Domi, Wathiq
    Kittaneh, Fuad
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (01) : 57 - 67
  • [3] NORM INEQUALITIES OF POSITIVE OPERATOR MATRICES
    HOU, JC
    DU, HK
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 1995, 22 (03) : 281 - 294
  • [4] A note on norm inequalities for positive matrices
    Zhang, Feng
    Xu, Jinli
    SCIENCEASIA, 2020, 46 (06): : 753 - 755
  • [5] Norm Inequalities for Positive Semidefinite Matrices
    ZOU Limin1
    2. College of Mathematics and Statistics
    WuhanUniversityJournalofNaturalSciences, 2012, 17 (05) : 454 - 456
  • [6] Norm inequalities for sector block matrices
    Fu, Xiaohui
    Lau, Pan-Shun
    Tam, Tin-Yau
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 605 (605) : 249 - 262
  • [7] Inequalities for the Hadamard Product of Matrices
    SIAM J Matrix Anal Appl, 1 (66):
  • [8] Inequalities for the Kronecker product of matrices
    Djihad Gueridi
    Fuad Kittaneh
    Annals of Functional Analysis, 2022, 13
  • [9] On the Inequalities for Trace of Product of Matrices
    Feng Xiu-Hong
    PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS AND PHYSICS, VOL 2: ADVANCES ON APPLIED MATHEMATICS AND COMPUTATION MATHEMATICS, 2010, : 82 - 84
  • [10] Inequalities for the Kronecker product of matrices
    Gueridi, Djihad
    Kittaneh, Fuad
    ANNALS OF FUNCTIONAL ANALYSIS, 2022, 13 (03)