MIXED MULTIFRACTAL SPECTRA OF HOMOGENEOUS MORAN MEASURES

被引:5
|
作者
Hattab, Jihed [1 ]
Selmi, Bilel [1 ]
Verma, Saurabh [2 ]
机构
[1] Univ Monastir, Fac Sci Monastir, Dept Math, Anal Probabil & Fractals Lab LR18ES17, Monastir 5000, Tunisia
[2] Indian Inst Informat Technol Allahabad, Dept Appl Sci, Prayagraj 211015, India
关键词
Mixed Multifractal Formalism; Hausdorff Dimension; Packing Dimension; Box Dimensions; Self-Similar Measures; Homogeneous Moran Measures; DIMENSION;
D O I
10.1142/S0218348X24400036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There are only two kinds of measures in which the mixed multifractal formalism applies, which are self-similar and self-conformal measures. This paper studies the validity and non-validity of the mixed multifractal formalism of other kinds of measures, called irregular/homogeneous Moran measures.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] FLUORESCENCE SPECTRA OF HOMOGENEOUS AND MIXED EUROPIUM COMPLEXES
    FILIPESCU, N
    MOORJANI, K
    MCAVOY, N
    BJORKLUN.S
    HURT, CR
    ZUMOFF, J
    APPLIED SPECTROSCOPY, 1968, 22 (5P1) : 513 - +
  • [42] Prevalent mixed Holder spectra and mixed multifractal formalism in a product of continuous Besov spaces
    Ben Abid, Moez
    NONLINEARITY, 2017, 30 (08) : 3332 - 3348
  • [43] Multifractal spectra and multifractal rigidity for horseshoes
    Barreira L.
    Journal of Dynamical and Control Systems, 1997, 3 (1) : 33 - 49
  • [44] Spectra of a class of Cantor-Moran measures with three-element digit sets
    Fu, Yan-Song
    Wang, Cong
    JOURNAL OF APPROXIMATION THEORY, 2021, 261
  • [45] The pointwise dimensions of Moran measures
    Lou ManLi
    Wu Min
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (05) : 1283 - 1292
  • [46] Spectrality of a Class of Moran Measures
    Chen, Ming-Liang
    Liu, Jing-Cheng
    Su, Juan
    Wang, Xiang-Yang
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2020, 63 (02): : 366 - 381
  • [47] Spectrality of a class of Moran measures
    Zheng-Yi Lu
    Xin-Han Dong
    Monatshefte für Mathematik, 2021, 196 : 207 - 230
  • [48] The pointwise dimensions of Moran measures
    LOU ManLi & WU Min Department of Mathematics
    ScienceChina(Mathematics), 2010, 53 (05) : 246 - 255
  • [49] The pointwise dimensions of Moran measures
    ManLi Lou
    Min Wu
    Science China Mathematics, 2010, 53 : 1283 - 1292
  • [50] A class of spectral Moran measures
    An, Li-Xiang
    He, Xing-Gang
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (01) : 343 - 354