MIXED MULTIFRACTAL SPECTRA OF HOMOGENEOUS MORAN MEASURES

被引:5
|
作者
Hattab, Jihed [1 ]
Selmi, Bilel [1 ]
Verma, Saurabh [2 ]
机构
[1] Univ Monastir, Fac Sci Monastir, Dept Math, Anal Probabil & Fractals Lab LR18ES17, Monastir 5000, Tunisia
[2] Indian Inst Informat Technol Allahabad, Dept Appl Sci, Prayagraj 211015, India
关键词
Mixed Multifractal Formalism; Hausdorff Dimension; Packing Dimension; Box Dimensions; Self-Similar Measures; Homogeneous Moran Measures; DIMENSION;
D O I
10.1142/S0218348X24400036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There are only two kinds of measures in which the mixed multifractal formalism applies, which are self-similar and self-conformal measures. This paper studies the validity and non-validity of the mixed multifractal formalism of other kinds of measures, called irregular/homogeneous Moran measures.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] The refined multifractal formalism of some homogeneous Moran measures
    Douzi, Zied
    Selmi, Bilel
    Ben Mabrouk, Anouar
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2021, 230 (21-22): : 3815 - 3834
  • [2] The refined multifractal formalism of some homogeneous Moran measures
    Zied Douzi
    Bilel Selmi
    Anouar Ben Mabrouk
    The European Physical Journal Special Topics, 2021, 230 : 3815 - 3834
  • [3] Multifractal spectra of Moran measures without local dimension
    Yuan, Zhihui
    NONLINEARITY, 2019, 32 (12) : 5060 - 5086
  • [4] Multifractal Structure of the Divergence Points of Some Homogeneous Moran Measures
    Xiao, JiaQing
    He, YouMing
    ADVANCES IN MATHEMATICAL PHYSICS, 2014, 2014
  • [5] The multifractal spectrum of some Moran measures
    Wu, M
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (08): : 1097 - 1112
  • [6] The multifractal spectrum of some Moran measures
    WU Min School of Mathematical Sciences South China University of Technology Guangzhou China
    ScienceinChina,SerA., 2005, Ser.A.2005 (08) : 1097 - 1112
  • [7] The multifractal spectrum of some moran measures
    Min Wu
    Science in China Series A: Mathematics, 2005, 48 : 1097 - 1112
  • [8] The multifractal spectrum of some Moran measures
    WU Min School of Mathematical Sciences
    Science China Mathematics, 2005, (08) : 1097 - 1112
  • [9] On the Equivalence of Multifractal Measures on Moran Sets
    Ben Mabrouk, Anouar
    Selmi, Bilel
    FILOMAT, 2022, 36 (10) : 3479 - 3490
  • [10] Multifractal analysis for a class of homogeneous Moran constructions
    Xue, Yu-Mei
    Kamae, Teturo
    CHAOS SOLITONS & FRACTALS, 2013, 53 : 52 - 59