Token Boosting for Robust Self-Supervised Visual Transformer Pre-training

被引:2
|
作者
Li, Tianjiao [1 ]
Foo, Lin Geng [1 ]
Hu, Ping [2 ]
Shang, Xindi [3 ]
Rahmani, Hossein [4 ]
Yuan, Zehuan [3 ]
Liu, Jun [1 ]
机构
[1] Singapore Univ Technol & Design, Singapore, Singapore
[2] Boston Univ, Boston, MA 02215 USA
[3] ByteDance, Beijing, Peoples R China
[4] Univ Lancaster, Lancaster, England
基金
新加坡国家研究基金会; 欧盟地平线“2020”;
关键词
OBJECT;
D O I
10.1109/CVPR52729.2023.02301
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Learning with large-scale unlabeled data has become a powerful tool for pre-training Visual Transformers (VTs). However, prior works tend to overlook that, in real-world scenarios, the input data may be corrupted and unreliable. Pre-training VTs on such corrupted data can be challenging, especially when we pre-train via the masked autoencoding approach, where both the inputs and masked "ground truth" targets can potentially be unreliable in this case. To address this limitation, we introduce the Token Boosting Module (TBM) as a plug-and-play component for VTs that effectively allows the VT to learn to extract clean and robust features during masked autoencoding pre-training. We provide theoretical analysis to show how TBM improves model pre-training with more robust and generalizable representations, thus benefiting downstream tasks. We conduct extensive experiments to analyze TBM's effectiveness, and results on four corrupted datasets demonstrate that TBM consistently improves performance on downstream tasks.
引用
收藏
页码:24027 / 24038
页数:12
相关论文
共 50 条
  • [21] Reducing Domain mismatch in Self-supervised speech pre-training
    Baskar, Murali Karthick
    Rosenberg, Andrew
    Ramabhadran, Bhuvana
    Zhang, Yu
    INTERSPEECH 2022, 2022, : 3028 - 3032
  • [22] Self-supervised VICReg pre-training for Brugada ECG detection
    Ronan, Robert
    Tarabanis, Constantine
    Chinitz, Larry
    Jankelson, Lior
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [23] A Self-Supervised Pre-Training Method for Chinese Spelling Correction
    Su J.
    Yu S.
    Hong X.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2023, 51 (09): : 90 - 98
  • [24] Self-supervised pre-training on industrial time-series
    Biggio, Luca
    Kastanis, Iason
    2021 8TH SWISS CONFERENCE ON DATA SCIENCE, SDS, 2021, : 56 - 57
  • [25] Self-supervised Pre-training for Semantic Segmentation in an Indoor Scene
    Shrestha, Sulabh
    Li, Yimeng
    Kosecka, Jana
    2024 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS, WACVW 2024, 2024, : 625 - 635
  • [26] FALL DETECTION USING SELF-SUPERVISED PRE-TRAINING MODEL
    Yhdego, Haben
    Audette, Michel
    Paolini, Christopher
    PROCEEDINGS OF THE 2022 ANNUAL MODELING AND SIMULATION CONFERENCE (ANNSIM'22), 2022, : 361 - 371
  • [27] CDS: Cross-Domain Self-supervised Pre-training
    Kim, Donghyun
    Saito, Kuniaki
    Oh, Tae-Hyun
    Plummer, Bryan A.
    Sclaroff, Stan
    Saenko, Kate
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9103 - 9112
  • [28] SPAKT: A Self-Supervised Pre-TrAining Method for Knowledge Tracing
    Ma, Yuling
    Han, Peng
    Qiao, Huiyan
    Cui, Chaoran
    Yin, Yilong
    Yu, Dehu
    IEEE ACCESS, 2022, 10 : 72145 - 72154
  • [29] MEASURING THE IMPACT OF DOMAIN FACTORS IN SELF-SUPERVISED PRE-TRAINING
    Sanabria, Ramon
    Wei-Ning, Hsu
    Alexei, Baevski
    Auli, Michael
    2023 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING WORKSHOPS, ICASSPW, 2023,
  • [30] Contrastive Self-Supervised Pre-Training for Video Quality Assessment
    Chen, Pengfei
    Li, Leida
    Wu, Jinjian
    Dong, Weisheng
    Shi, Guangming
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 458 - 471