Random Tensor Networks with Non-trivial Links

被引:8
|
作者
Cheng, Newton [1 ]
Lancien, Cecilia [2 ,3 ]
Penington, Geoff [1 ,4 ]
Walter, Michael [5 ]
Witteveen, Freek [6 ,7 ]
机构
[1] Univ Calif Berkeley, Ctr Theoret Phys, Dept Phys, Berkeley, CA USA
[2] Univ Grenoble Alpes, Inst Fourier, Gieres, France
[3] Univ Grenoble Alpes, CNRS, Gieres, France
[4] Inst Adv Study, Princeton, NJ USA
[5] Ruhr Univ Bochum, Fac Comp Sci, Bochum, Germany
[6] Univ Copenhagen, Dept Math Sci, Copenhagen, Denmark
[7] Univ Copenhagen, QMATH, Copenhagen, Denmark
来源
ANNALES HENRI POINCARE | 2024年 / 25卷 / 04期
基金
欧洲研究理事会;
关键词
MATRIX PRODUCT STATES; QUANTUM; ASYMPTOTICS;
D O I
10.1007/s00023-023-01358-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Random tensor networks are a powerful toy model for understanding the entanglement structure of holographic quantum gravity. However, unlike holographic quantum gravity, their entanglement spectra are flat. It has therefore been argued that a better model consists of random tensor networks with link states that are not maximally entangled, i.e., have non-trivial spectra. In this work, we initiate a systematic study of the entanglement properties of these networks. We employ tools from free probability, random matrix theory, and one-shot quantum information theory to study random tensor networks with bounded and unbounded variation in link spectra, and in cases where a subsystem has one or multiple minimal cuts. If the link states have bounded spectral variation, the limiting entanglement spectrum of a subsystem with two minimal cuts can be expressed as a free product of the entanglement spectra of each cut, along with a Marchenko-Pastur distribution. For a class of states with unbounded spectral variation, analogous to semiclassical states in quantum gravity, we relate the limiting entanglement spectrum of a subsystem with two minimal cuts to the distribution of the minimal entanglement across the two cuts. In doing so, we draw connections to previous work on split transfer protocols, entanglement negativity in random tensor networks, and Euclidean path integrals in quantum gravity.
引用
收藏
页码:2107 / 2212
页数:106
相关论文
共 50 条
  • [21] ON NON-TRIVIAL SPECTRA OF TRIVIAL GAUGE THEORIES
    Korcyl, Piotr
    Koren, Mateusz
    Wosiek, Jacek
    ACTA PHYSICA POLONICA B, 2013, 44 (04): : 713 - 720
  • [22] Detecting and Describing Non-Trivial Outliers using Bayesian Networks
    Babbar, Sakshi
    2015 INTERNATIONAL CONFERENCE ON COGNITIVE COMPUTING AND INFORMATION PROCESSING (CCIP), 2015,
  • [23] LINKS WITH NON-TRIVIAL ALEXANDER POLYNOMIAL WHICH ARE TOPOLOGICALLY CONCORDANT TO THE HOPF LINK
    Kim, Min Hoon
    Krcatovich, David
    Park, Junghwan
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (08) : 5379 - 5400
  • [24] ENTANGLEMENT AND NON-TRIVIAL TOPOLOGIES
    Prudencio, Thiago
    Cirilo-Lombardo, Diego Julio
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2013, 10 (09)
  • [25] The Non-Trivial Accomplishments of Counterterrorists
    Jordan, Jenna
    SECURITY STUDIES, 2024,
  • [26] Fermions on non-trivial topologies
    Gamboa, J
    PHYSICS LETTERS B, 2000, 477 (04) : 469 - 473
  • [27] NON-TRIVIAL LAWS FOR HOMOTOPY
    TAYLOR, W
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A5 - A6
  • [28] NON-TRIVIAL REVERSAL OF THE TORUS
    PETIT, JP
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 287 (14): : 927 - 930
  • [29] The non-trivial functions of sleep
    Rattenborg, Niels C.
    Lesku, John A.
    Martinez-Gonzalez, Dolores
    Lima, Steven L.
    SLEEP MEDICINE REVIEWS, 2007, 11 (05) : 405 - 409
  • [30] Non-trivial pursuit of physiology
    Zakaryan, V
    Bliss, R
    Sarvazyan, N
    ADVANCES IN PHYSIOLOGY EDUCATION, 2005, 29 (01) : 11 - 14