Deep whole brain segmentation of 7T structural MRI

被引:0
|
作者
Ramadass, Karthik [1 ]
Yu, Xin [1 ]
Cai, Leon Y. [3 ]
Tang, Yucheng [1 ]
Bao, Shunxing [2 ]
Kerley, Cailey [2 ]
D'Archangel, Micah [4 ]
Barquero, Laura A. [4 ]
Newton, Allen T. [3 ,5 ]
Gauthier, Isabel [6 ]
McGugin, Rankin Williams [6 ]
Dawant, Benoit M. [1 ,2 ]
Cutting, Laurie E. [4 ]
Huo, Yuankai [1 ,2 ]
Landman, Bennett A. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Vanderbilt Univ, Dept Comp Sci, Nashville, TN 37235 USA
[2] Vanderbilt Univ, Dept Elect & Comp Engn, Nashville, TN USA
[3] Vanderbilt Univ, Dept Biomed Engn, Nashville, TN USA
[4] Vanderbilt Univ, Vanderbilt Brain Inst, Nashville, TN USA
[5] Vanderbilt Univ, Inst Imaging Sci, Nashville, TN USA
[6] Vanderbilt Univ, Dept Psychol, Nashville, TN USA
来源
MEDICAL IMAGING 2023 | 2023年 / 12464卷
基金
美国国家卫生研究院;
关键词
T1-weighted; Deep learning; Whole brain segmentation; 7T MRI; Convoluted Neural Network; Transfer Learning;
D O I
10.1117/12.2654108
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
7T magnetic resonance imaging (MRI) has the potential to drive our understanding of human brain function through new contrast and enhanced resolution. Whole brain segmentation is a key neuroimaging technique that allows for region-by-region analysis of the brain. Segmentation is also an important preliminary step that provides spatial and volumetric information for running other neuroimaging pipelines. Spatially localized atlas network tiles (SLANT) is a popular 3D convolutional neural network (CNN) tool that breaks the whole brain segmentation task into localized sub-tasks. Each subtask involves a specific spatial location handled by an independent 3D convolutional network to provide high resolution whole brain segmentation results. SLANT has been widely used to generate whole brain segmentations from structural scans acquired on 3T MRI. However, the use of SLANT for whole brain segmentation from structural 7T MRI scans has not been successful due to the inhomogeneous image contrast usually seen across the brain in 7T MRI. For instance, we demonstrate the mean percent difference of SLANT label volumes between a 3T scan-rescan is approximately 1.73%, whereas its 3T-7T scan-rescan counterpart has higher differences around 15.13%. Our approach to address this problem is to register the whole brain segmentation performed on 3T MRI to 7T MRI and use this information to finetune SLANT for structural 7T MRI. With the finetuned SLANT pipeline, we observe a lower mean relative difference in the label volumes of similar to 8.43% acquired from structural 7T MRI data. Dice similarity coefficient between SLANT segmentation on the 3T MRI scan and the after finetuning SLANT segmentation on the 7T MRI increased from 0.79 to 0.83 with p<0.01. These results suggest finetuning of SLANT is a viable solution for improving whole brain segmentation on high resolution 7T structural imaging.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] 7T MRI Predicts Amelioration of Neurodegeneration in the Brain after AAV Gene Therapy
    Gray-Edwards, Heather L.
    Maguire, Anne S.
    Salibi, Nouha
    Ellis, Lauren E.
    Voss, Taylor L.
    Diffie, Elise B.
    Koehler, Jey
    Randle, Ashley N.
    Taylor, Amanda R.
    Brunson, Brandon L.
    Denney, Thomas S.
    Beyers, Ronald J.
    Gentry, Atoska S.
    Gross, Amanda L.
    Batista, Ana R.
    Sena-Esteves, Miguel
    Martin, Douglas R.
    MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT, 2020, 17 : 258 - 270
  • [42] Optimization of fast gray matter acquisition T1 inversion recovery (FGATIR) on 7T MRI for deep brain stimulation targeting
    Tao, Shengzhen
    Zhou, Xiangzhi
    Westerhold, Erin M.
    Middlebrooks, Erik H.
    Lin, Chen
    NEUROIMAGE, 2022, 252
  • [43] Quantitative 7T MRI does not detect occult brain damage in neuromyelitis optica
    Pasquier, Baptiste
    Borisow, Nadja
    Rasche, Ludwig
    Bellmann-Strobl, Judith
    Ruprecht, Klemens
    Niendorf, Thoralf
    Derfuss, Tobias J.
    Wuerfel, Jens
    Paul, Friedemann
    Sinnecker, Tim
    NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION, 2019, 6 (03):
  • [44] A hybrid hierarchical strategy for registration of 7T TOF-MRI to 7T PC-MRI intracranial vessel data
    Lena Spitz
    Franziska Gaidzik
    Daniel Stucht
    Hendrik Mattern
    Bernhard Preim
    Sylvia Saalfeld
    International Journal of Computer Assisted Radiology and Surgery, 2023, 18 : 837 - 844
  • [45] A hybrid hierarchical strategy for registration of 7T TOF-MRI to 7T PC-MRI intracranial vessel data
    Spitz, Lena
    Gaidzik, Franziska
    Stucht, Daniel
    Mattern, Hendrik
    Preim, Bernhard
    Saalfeld, Sylvia
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2023, 18 (05) : 837 - 844
  • [46] Individualized cognitive neuroscience needs 7T: Comparing numerosity maps at 3T and 7T MRI
    Cai, Yuxuan
    Hofstetter, Shir
    Zwaag, Wietske van der
    Zuiderbaan, Wietske
    Dumoulin, Serge O.
    NEUROIMAGE, 2021, 237
  • [47] Digging deep in 7T MRI: potential epileptogenic and surgical lesions in epilepsy patients with nonlesional 3T MRI
    Chalia, Mayur
    Panda, Ananya
    Brinkmann, Benjamin
    Britton, Jeffrey
    Messina, Steven
    Krecke, Karl
    Witte, Robert
    Welker, Kirk
    Wong-Kisiel, Lily
    EPILEPSIA, 2021, 62 : 229 - 230
  • [48] Quantification of deep medullary veins at 7 T brain MRI
    Hugo J. Kuijf
    Willem H. Bouvy
    Jaco J. M. Zwanenburg
    Tom B. Razoux Schultz
    Max A. Viergever
    Koen L. Vincken
    Geert Jan Biessels
    European Radiology, 2016, 26 : 3412 - 3418
  • [49] Quantification of deep medullary veins at 7 T brain MRI
    Kuijf, Hugo J.
    Bouvy, Willem H.
    Zwanenburg, Jaco J. M.
    Schultz, Tom B. Razoux
    Viergever, Max A.
    Vincken, Koen L.
    Biessels, Geert Jan
    EUROPEAN RADIOLOGY, 2016, 26 (10) : 3412 - 3418
  • [50] The Learning-based Automatic Segmentation Algorithm of Brain MR Images Based on 7T
    Deng, Minghui
    Jin Zhenhao
    Yu, Ran
    Zeng, Qingshuang
    CURRENT MEDICAL IMAGING, 2021, 17 (03) : 342 - 351