机构:
Jilin Univ, Inst Math, Changchun 130012, Peoples R ChinaJilin Univ, Inst Math, Changchun 130012, Peoples R China
Niu, Xun
[1
]
Wang, Kaizhi
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, CMA Shanghai, Sch Math Sci, Shanghai 200240, Peoples R ChinaJilin Univ, Inst Math, Changchun 130012, Peoples R China
Wang, Kaizhi
[2
]
Li, Yong
论文数: 0引用数: 0
h-index: 0
机构:
Jilin Univ, Inst Math, Changchun 130012, Peoples R China
Northeast Normal Univ, Sch Math & Stat, Ctr Math & Interdisciplinary Sci, Changchun 130024, Peoples R ChinaJilin Univ, Inst Math, Changchun 130012, Peoples R China
Li, Yong
[1
,3
]
机构:
[1] Jilin Univ, Inst Math, Changchun 130012, Peoples R China
[2] Shanghai Jiao Tong Univ, CMA Shanghai, Sch Math Sci, Shanghai 200240, Peoples R China
[3] Northeast Normal Univ, Sch Math & Stat, Ctr Math & Interdisciplinary Sci, Changchun 130024, Peoples R China
Poincare established the problem how much of the stability mechanism of integrable Hamiltonian systems can persist under small perturbations, which he called "the fundamental problem of dynamics". This paper deals with the fundamental problem in general resonant case. We give a weak KAM type result that for each y in the g (with rank m0)-resonant surface, the nearly integrable Hamiltonian system has at least m0 + 1 weak KAM solutions associated with relative equilibria. (c) 2023 Elsevier Masson SAS. All rights reserved.
机构:
Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, JapanUniv Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
Mitake, Hiroyoshi
Soga, Kohei
论文数: 0引用数: 0
h-index: 0
机构:
Keio Univ, Fac Sci & Technol, Dept Math, Kohoku Ku, 3-14-1 Hiyoshi, Yokohama, Kanagawa 2238522, JapanUniv Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan