Breaking the Expression Bottleneck of Graph Neural Networks

被引:7
|
作者
Yang, Mingqi [1 ]
Wang, Renjian [1 ]
Shen, Yanming [1 ]
Qi, Heng [1 ]
Yin, Baocai [1 ,2 ]
机构
[1] Dalian Univ Technol, Sch Comp Sci & Technol, Dalian 116024, Liaoning, Peoples R China
[2] Peng Cheng Lab, Shenzhen 518066, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Task analysis; Graph neural networks; Convolution; Buildings; Systematics; Representation learning; Power measurement; Deep learning; graph representation learning; graph neural networks;
D O I
10.1109/TKDE.2022.3168070
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
the Weisfeiler-Lehman (WL) graph isomorphism test was used to measure the expressiveness of graph neural networks (GNNs), showing that the neighborhood aggregation GNNs were at most as powerful as 1-WL test in distinguishing graph structures. There were also improvements proposed in analogy to k-WL test (k > 1). However, the aggregations in these GNNs are far from injective as required by the WL test, and suffer from weak distinguishing strength, making it become the expression bottleneck. In this paper, we improve the expressiveness by exploring powerful aggregations. We reformulate an aggregation with the corresponding aggregation coefficient matrix, and then systematically analyze the requirements on this matrix for building more powerful and even injective aggregations. We also show the necessity of applying nonlinear units ahead of aggregations, which is different from most existing GNNs. Based on our theoretical analysis, we develop ExpandingConv. Experimental results show that our model significantly boosts performance, especially for large and densely connected graphs.
引用
收藏
页码:5652 / 5664
页数:13
相关论文
共 50 条
  • [31] Semisupervised Graph Neural Networks for Graph Classification
    Xie, Yu
    Liang, Yanfeng
    Gong, Maoguo
    Qin, A. K.
    Ong, Yew-Soon
    He, Tiantian
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (10) : 6222 - 6235
  • [32] Learning graph normalization for graph neural networks
    Chen, Yihao
    Tang, Xin
    Qi, Xianbiao
    Li, Chun-Guang
    Xiao, Rong
    NEUROCOMPUTING, 2022, 493 : 613 - 625
  • [33] Learning Graph Matching with Graph Neural Networks
    Dobler, Kalvin
    Riesen, Kaspar
    ARTIFICIAL NEURAL NETWORKS IN PATTERN RECOGNITION, ANNPR 2024, 2024, 15154 : 3 - 12
  • [34] Compressing Neural Networks using the Variational Information Bottleneck
    Dai, Bin
    Zhu, Chen
    Guo, Baining
    Wipf, David
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [35] Factor Graph Neural Networks
    Zhang, Zhen
    Dupty, Mohammed Haroon
    Wu, Fan
    Shi, Javen Qinfeng
    Lee, Wee Sun
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [36] The Logic of Graph Neural Networks
    Grohe, Martin
    2021 36TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS), 2021,
  • [37] Graph Kernel Neural Networks
    Cosmo, Luca
    Minello, Giorgia
    Bicciato, Alessandro
    Bronstein, Michael M.
    Rodola, Emanuele
    Rossi, Luca
    Torsello, Andrea
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 14
  • [38] Benchmarking Graph Neural Networks
    Dwivedi, Vijay Prakash
    Joshi, Chaitanya K.
    Luu, Anh Tuan
    Laurent, Thomas
    Bengio, Yoshua
    Bresson, Xavier
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [39] Torsion Graph Neural Networks
    Shen, Cong
    Liu, Xiang
    Luo, Jiawei
    Xia, Kelin
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2025, 47 (04) : 2946 - 2956
  • [40] Graph Pointer Neural Networks
    Yang, Tianmeng
    Wang, Yujing
    Yue, Zhihan
    Yang, Yaming
    Tong, Yunhai
    Bai, Jing
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 8832 - 8839