Physics-Driven Deep Learning for Computational Magnetic Resonance Imaging: Combining physics and machine learning for improved medical imaging

被引:0
|
作者
Hammernik, Kerstin [1 ,2 ]
Kustner, Thomas [3 ,4 ]
Yaman, Burhaneddin [5 ]
Huang, Zhengnan [6 ]
Rueckert, Daniel [7 ,8 ]
Knoll, Florian [9 ,10 ]
Akcakaya, Mehmet [11 ,12 ]
机构
[1] Tech Univ Munich, Dept Informat, D-85748 Garching, Germany
[2] Imperial Coll London, Dept Comp, London SW7 2AZ, England
[3] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
[4] Univ Hosp Tubingen, Grp Med Imaging & Data Anal, D-72076 Tubingen, Germany
[5] Univ Minnesota, Elect Engn, Minneapolis, MN 55455 USA
[6] New York Univ, Ctr Biomed Imaging, Sch Med, New York, NY 10016 USA
[7] Tech Univ Munich, Artificial Intelligence Med & Healthcare, D-85748 Garching, Germany
[8] Imperial Coll London, Visual Informat Proc, Dept Comp, London SW7 2AZ, England
[9] New York Univ, Radiol, Ctr Biomed Imaging, Grossman Sch Med, New York, NY USA
[10] Friedrich Alexander Univ Erlangen Nuremberg, Dept Artificial Intelligence Biomed Engn, D-91052 Erlangen, Germany
[11] Harvard Med Sch, Boston, MA USA
[12] Univ Minnesota, Minneapolis, MN 55455 USA
基金
英国工程与自然科学研究理事会; 美国国家科学基金会; 美国国家卫生研究院;
关键词
Deep learning; Inverse problems; Magnetic resonance imaging; Computational modeling; Pipelines; Signal processing; Task analysis; K-SPACE; RECONSTRUCTION; NETWORKS; MODELS;
D O I
10.1109/MSP.2022.3215288
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Physics-driven deep learning methods have emerged as a powerful tool for computational magnetic resonance imaging (MRI) problems, pushing reconstruction performance to new limits. This article provides an overview of the recent developments in incorporating physics information into learning-based MRI reconstruction. We consider inverse problems with both linear and nonlinear forward models for computational MRI and review the classical approaches for solving these. We then focus on physics-driven deep learning approaches, covering physics-driven loss functions, plug-and-play (PnP) methods, generative models, and unrolled networks. We highlight domain-specific challenges, such as real- and complex-valued building blocks of neural networks, and translational applications in MRI with linear and nonlinear forward models. Finally, we discuss common issues and open challenges, and we draw connections to the importance of physics-driven learning when combined with other downstream tasks in the medical imaging pipeline.
引用
收藏
页码:98 / 114
页数:17
相关论文
共 50 条
  • [41] The Physics of Magnetic Resonance Imaging Safety
    Stafford, Roger Jason
    MAGNETIC RESONANCE IMAGING CLINICS OF NORTH AMERICA, 2020, 28 (04) : 517 - +
  • [42] Basic of machine learning and deep learning in imaging for medical physicists
    Manco, Luigi
    Maffei, Nicola
    Strolin, Silvia
    Vichi, Sara
    Bottazzi, Luca
    Strigari, Lidia
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2021, 83 : 194 - 205
  • [43] From deep learning to dark fields-medical imaging physics in ECR 2020
    Kortesniemi, Mika
    EUROPEAN RADIOLOGY, 2020, 30 (12) : 6937 - 6939
  • [44] Machine Learning and Deep Learning Applications in Magnetic Particle Imaging
    Nigam, Saumya
    Gjelaj, Elvira
    Wang, Rui
    Wei, Guo-Wei
    Wang, Ping
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2025, 61 (01) : 42 - 51
  • [46] A physics-driven and machine learning-based digital twinning approach to transient thermal systems
    Di Meglio, Armando
    Massarotti, Nicola
    Nithiarasu, Perumal
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2024, 34 (06) : 2229 - 2256
  • [47] Underwater polarization image de-scattering utilizing a physics-driven deep learning method
    Wu, Liyang
    Zhang, Xiaofang
    Chang, Jun
    Li, Bingchen
    OPTICS EXPRESS, 2024, 32 (17): : 30670 - 30686
  • [48] Physics-Driven Machine-Learning-Based Borehole Sonic Interpretation in the Presence of Casing and Drillpipe
    Liang, Lin
    Lei, Ting
    Donald, Adam
    Blyth, Matthew
    SPE RESERVOIR EVALUATION & ENGINEERING, 2021, 24 (02) : 310 - 324
  • [49] Dual-Beam Forming Based on Physics-Driven Deep Learning Method for Programmable Metasurface
    Bao, Jianghan
    Xiao, Qiang
    Liu, Che
    Cui, Tie Jun
    2024 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION AND INC/USNCURSI RADIO SCIENCE MEETING, AP-S/INC-USNC-URSI 2024, 2024, : 245 - 246
  • [50] Data- and Physics-Driven Deep Learning Based Reconstruction for Fast MRI: Fundamentals and Methodologies
    Huang, Jiahao
    Wu, Yinzhe
    Wang, Fanwen
    Fang, Yingying
    Nan, Yang
    Alkan, Cagan
    Abraham, Daniel
    Liao, Congyu
    Xu, Lei
    Gao, Zhifan
    Wu, Weiwen
    Zhu, Lei
    Chen, Zhaolin
    Lally, Peter
    Bangerter, Neal
    Setsompop, Kawin
    Guo, Yike
    Rueckert, Daniel
    Wang, Ge
    Yang, Guang
    IEEE REVIEWS IN BIOMEDICAL ENGINEERING, 2025, 18 : 152 - 171