On the performance of some new ridge parameter estimators in the Poisson-inverse Gaussian ridge regression

被引:6
|
作者
Batool, Asia [1 ]
Amin, Muhammad [1 ]
Elhassanein, Ahmed [2 ,3 ]
机构
[1] Univ Sargodha, Dept Stat, Sargodha, Pakistan
[2] Univ Bisha, Coll Sci, Dept Math, POB 551, Bisha 61922, Saudi Arabia
[3] Damanhour Univ, Fac Sci, Dept Math, Damanhour, Egypt
关键词
MLE; Multicollinearity; Poisson-inverse Gaussian regression; Over-dispersion; Ridge estimator; BIASED ESTIMATION; SIMULATION; MODEL;
D O I
10.1016/j.aej.2023.02.037
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Poisson Inverse Gaussian Regression model (PIGRM) is used for modeling the count datasets to deal with the issue of over-dispersion. Generally, the maximum likelihood estima-tor (MLE) is used to estimate the PIGRM estimates. In the PIGRM, when the explanatory vari-ables are correlated, the MLE does not provide efficient results. To overcome this problem, we propose a ridge estimator for the PIGRM. The matrix mean square error (MSE) and the scalar MSE properties are derived and then compared with the MLE. In the ridge estimator, ridge param-eter play a significant role, so, this study also proposes different ridge parameter estimators for the PIGRM. The performance of the proposed estimator is evaluated with the help of a simulation study and a real-life application using MSE as a performance evaluation criterion. The simulation study and the real-life application results show the superiority of the proposed parameter estimators as compared to the MLE. (c) 2023 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
引用
收藏
页码:231 / 245
页数:15
相关论文
共 50 条
  • [31] A Simulation Study on Some Restricted Ridge Regression Estimators
    Najarian, S.
    Arashi, M.
    Kibria, B. M. Golam
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2013, 42 (04) : 871 - 890
  • [32] Proposed methods in estimating the ridge regression parameter in Poisson regression model
    Alanaz, Mazin M.
    Algamal, Zakariya Yahya
    ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2018, 11 (02) : 506 - 515
  • [33] A New Ridge Estimator for the Poisson Regression Model
    Rashad, Nadwa K.
    Algamal, Zakariya Yahya
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A6): : 2921 - 2928
  • [34] Modified Robust Ridge M-Estimators in Two-Parameter Ridge Regression Model
    Yasin, Seyab
    Salem, Sultan
    Ayed, Hamdi
    Kamal, Shahid
    Suhail, Muhammad
    Khan, Yousaf Ali
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [35] A New Ridge Estimator for the Poisson Regression Model
    Nadwa K. Rashad
    Zakariya Yahya Algamal
    Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43 : 2921 - 2928
  • [37] Penalized and ridge-type shrinkage estimators in Poisson regression model
    Noori Asl, Mehri
    Bevrani, Hossein
    Arabi Belaghi, Reza
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (07) : 4039 - 4056
  • [38] Modified Ridge Regression Estimators
    Khalaf, G.
    Mansson, Kristofer
    Shukur, Ghazi
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (08) : 1476 - 1487
  • [39] Beyond mean modelling: Bias due to misspecification of dispersion in Poisson-inverse Gaussian regression
    Heller, Gillian Z.
    Couturier, Dominique-Laurent
    Heritier, Stephane R.
    BIOMETRICAL JOURNAL, 2019, 61 (02) : 333 - 342
  • [40] A Poisson ridge regression estimator
    Mansson, Kristofer
    Shukur, Ghazi
    ECONOMIC MODELLING, 2011, 28 (04) : 1475 - 1481