Assessing and mitigating systematic errors in forest attribute maps utilizing harvester and airborne laser scanning data

被引:2
|
作者
Raty, Janne [1 ,2 ]
Hauglin, Marius [1 ]
Astrup, Rasmus [1 ]
Breidenbach, Johannes [1 ]
机构
[1] Norwegian Inst Bioecon Res NIBIO, Hogskoleveien 8, N-1433 As, Norway
[2] Nat Resources Inst Finland LUKE, Yliopistokatu 6, Joensuu 80100, Finland
关键词
cut-to-length harvester data; model-assisted estimation; national forest inventory; airborne LiDAR; large-area esti-mation; INVENTORY; AREA; VOLUME; LIDAR;
D O I
10.1139/cjfr-2022-0053
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Cut-to-length harvesters collect useful information for modeling relationships between forest attributes and airborne laser scanning (ALS) data. However, harvesters operate in mature forests, which may introduce selection biases that can result in systematic errors in harvester data-based forest attribute maps. We fitted regression models (harvester models) for volume (V), height (HL), stem frequency (N), above-ground biomass, basal area, and quadratic mean diameter (QMD) using harvester and ALS data. Performances of the harvester models were evaluated using national forest inventory plots in an 8.7 Mha study area. We estimated biases of large-area synthetic estimators and compared efficiencies of model-assisted (MA) estimators with field data-based direct estimators. The harvester models performed better in productive than unproductive forests, but systematic errors occurred in both. The use of MA estimators resulted in efficiency gains that were largest for HL (relative efficiency, RE = 6.0) and smallest for QMD (RE = 1.5). The bias of the synthetic estimator was largest for N (39%) and smallest for V (1%). The latter was due to an overestimation of deciduous and an underestimation of spruce forests that by chance balanced. We conclude that a probability sample of reference observations may be required to ensure the unbiasedness of estimators utilizing harvester data.
引用
收藏
页码:284 / 301
页数:18
相关论文
共 50 条
  • [41] Assessing Forest Traversability for Autonomous Mobile Systems Using Close- Range Airborne Laser Scanning
    Yrttimaa, Tuomas
    Matsuzaki, Shigemichi
    Kankare, Ville
    Junttila, Samuli
    Saarinen, Ninni
    Kukko, Antero
    Hyyppa, Juha
    Miura, Jun
    Vastaranta, Mikko
    CROATIAN JOURNAL OF FOREST ENGINEERING, 2024, 45 (01) : 169 - 182
  • [42] Mapping forest age using National Forest Inventory, airborne laser scanning, and Sentinel-2 data
    Schumacher, Johannes
    Hauglin, Marius
    Astrup, Rasmus
    Breidenbach, Johannes
    FOREST ECOSYSTEMS, 2020, 7 (01)
  • [43] Mapping forest age using National Forest Inventory, airborne laser scanning, and Sentinel-2 data
    Johannes Schumacher
    Marius Hauglin
    Rasmus Astrup
    Johannes Breidenbach
    ForestEcosystems, 2020, 7 (04) : 793 - 806
  • [44] Inoptimality losses in forest management decisions caused by errors in an inventory based on airborne laser scanning and aerial photographs
    Islam, Md. Nurul
    Kurttila, Mikko
    Mehtatalo, Lauri
    Pukkala, Timo
    CANADIAN JOURNAL OF FOREST RESEARCH, 2010, 40 (12) : 2427 - 2438
  • [45] AUTOMATED INDIVIDUAL TREE DETECTION IN AMAZON TROPICAL FOREST FROM AIRBORNE LASER SCANNING DATA
    Karantino Millikan, Pedro Henrique
    Silva, Carlos Alberto
    Estraviz Rodriguez, Luiz Carlos
    de Oliveira, Tupiara Mergen
    de Lima Chaves e Carvalho, Mariana Peres
    de Padua Chaves e Carvalhod, Samuel
    CERNE, 2019, 25 (03) : 273 - 282
  • [46] USEFULNESS OF NATIONAL AIRBORNE LASER SCANNING AND AERIAL SURVEY DATA IN FOREST CANOPY GAP DETECTION
    Pintar, Ante Martin
    Skudnik, Mitja
    GEODETSKI VESTNIK, 2024, 68 (02) : 180 - 193
  • [47] SUPPORT VECTOR MACHINES REGRESSION FOR ESTIMATION OF FOREST PARAMETERS FROM AIRBORNE LASER SCANNING DATA
    Monnet, J. -M.
    Berger, F.
    Chanussot, J.
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 2711 - 2714
  • [48] Advancements in Forest Monitoring: Applications and Perspectives of Airborne Laser Scanning and Complementarity with Satellite Optical Data
    Borghi, Costanza
    Francini, Saverio
    D'Amico, Giovanni
    Valbuena, Ruben
    Chirici, Gherardo
    LAND, 2025, 14 (03)
  • [49] Monitoring seedling stands using national forest inventory and multispectral airborne laser scanning data
    Rana, Parvez
    Mattila, Ulla
    Mehtaetalo, Lauri
    Siipilehto, Jouni
    Hou, Zhengyang
    Xu, Qing
    Tokola, Timo
    CANADIAN JOURNAL OF FOREST RESEARCH, 2023, 53 (04) : 302 - 313
  • [50] Estimation of fractional forest cover from airborne laser scanning data in abandoned agricultural land
    Puittaimestiku kaardistamine aerolidari andmete põhjal metsana lisanduvatel aladel
    Mõistus, Marta, 1600, Institute of Forestry and Rural Engineering (59):