Evolutionary Neural Architecture Search and Its Applications in Healthcare

被引:1
|
作者
Liu, Xin [1 ]
Li, Jie [1 ]
Zhao, Jianwei [2 ]
Cao, Bin [2 ]
Yan, Rongge [3 ]
Lyu, Zhihan [4 ]
机构
[1] Hebei Univ Technol, Sch Econ & Management, Tianjin 300401, Peoples R China
[2] Hebei Univ Technol, Sch Artificial Intelligence, Tianjin 300401, Peoples R China
[3] Hebei Univ Technol, Sch Elect Engn, Tianjin 300401, Peoples R China
[4] Uppsala Univ, Dept Game Design, S-75105 Uppsala, Sweden
来源
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES | 2024年 / 139卷 / 01期
基金
中国国家自然科学基金;
关键词
Neural architecture search; evolutionary computation; large-scale multiobjective optimization; distributed parallelism; healthcare; PARTICLE SWARM OPTIMIZATION; FUZZY-ROUGH; GENETIC ALGORITHM; MULTIOBJECTIVE EVOLUTION; IMAGE CLASSIFICATION; NETWORKS; DECOMPOSITION; COMBINATIONS; DESIGN; MODELS;
D O I
10.32604/cmes.2023.030391
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Most of the neural network architectures are based on human experience, which requires a long and tedious trial-and-error process. Neural architecture search (NAS) attempts to detect effective architectures without human intervention. Evolutionary algorithms (EAs) for NAS can find better solutions than human-designed architectures by exploring a large search space for possible architectures. Using multiobjective EAs for NAS, optimal neural architectures that meet various performance criteria can be explored and discovered efficiently. Furthermore, hardware-accelerated NAS methods can improve the efficiency of the NAS. While existing reviews have mainly focused on different strategies to complete NAS, a few studies have explored the use of EAs for NAS. In this paper, we summarize and explore the use of EAs for NAS, as well as large-scale multiobjective optimization strategies and hardware-accelerated NAS methods. NAS performs well in healthcare applications, such as medical image analysis, classification of disease diagnosis, and health monitoring. EAs for NAS can automate the search process and optimize multiple objectives simultaneously in a given healthcare task. Deep neural network has been successfully used in healthcare, but it lacks interpretability. Medical data is highly sensitive, and privacy leaks are frequently reported in the healthcare industry. To solve these problems, in healthcare, we propose an interpretable neuroevolution framework based on federated learning to address search efficiency and privacy protection. Moreover, we also point out future research directions for evolutionary NAS. Overall, for researchers who want to use EAs to optimize NNs in healthcare, we analyze the advantages and disadvantages of doing so to provide detailed guidance, and propose an interpretable privacy-preserving framework for healthcare applications.
引用
收藏
页码:143 / 185
页数:43
相关论文
共 50 条
  • [41] Neural Architecture Search Based on Evolutionary Algorithms with Fitness Approximation
    Pan, Chao
    Yao, Xin
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [42] Evolutionary Neural Architecture Search for Multivariate Time Series Forecasting
    Liang, Zixuan
    Sun, Yanan
    ASIAN CONFERENCE ON MACHINE LEARNING, VOL 222, 2023, 222
  • [43] Evolutionary neural architecture search for remaining useful life prediction
    Mo, Hyunho
    Custode, Leonardo Lucio
    Iacca, Giovanni
    APPLIED SOFT COMPUTING, 2021, 108
  • [44] Accelerating Evolutionary Neural Architecture Search via Multifidelity Evaluation
    Yang, Shangshang
    Tian, Ye
    Xiang, Xiaoshu
    Peng, Shichen
    Zhang, Xingyi
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2022, 14 (04) : 1778 - 1792
  • [45] Multi-objective Evolutionary Neural Architecture Search for Recurrent Neural Networks
    Booysen, Reinhard
    Bosman, Anna Sergeevna
    NEURAL PROCESSING LETTERS, 2024, 56 (04)
  • [46] Knowledge transfer evolutionary search for lightweight neural architecture with dynamic inference
    Qian, Xiaoxue
    Liu, Fang
    Jiao, Licheng
    Zhang, Xiangrong
    Huang, Xinyan
    Li, Shuo
    Chen, Puhua
    Liu, Xu
    PATTERN RECOGNITION, 2023, 143
  • [47] Surrogate-assisted evolutionary neural architecture search with network embedding
    Fan, Liang
    Wang, Handing
    COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (03) : 3313 - 3331
  • [48] EG-NAS: Neural Architecture Search with Fast Evolutionary Exploration
    Cai, Zicheng
    Chen, Lei
    Liu, Peng
    Ling, Tongtao
    Lai, Yutao
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 10, 2024, : 11159 - 11167
  • [49] Fast Evolutionary Neural Architecture Search by Contrastive Predictor with Linear Regions
    Peng, Yameng
    Song, Andy
    Ciesielski, Vic
    Fayek, Haytham M.
    Chang, Xiaojun
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, GECCO 2023, 2023, : 1257 - 1266
  • [50] Knowledge reconstruction assisted evolutionary algorithm for neural network architecture search
    An, Yang
    Zhang, Changsheng
    Zheng, Xuanyu
    KNOWLEDGE-BASED SYSTEMS, 2023, 264