Understanding the Internal Conversion Efficiency of BiVO4/SnO2 Photoanodes for Solar Water Splitting: An Experimental and Computational Analysis

被引:8
|
作者
Geronimo, Laura [1 ]
Ferreira, Catarina G. [1 ]
Gacha, Valentina [1 ]
Raptis, Dimitrios [1 ]
Martorell, Jordi [1 ,2 ]
Ros, Carles [1 ]
机构
[1] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Castelldefels 08860, Spain
[2] Univ Politecn Cataluna, Dept Fis, Terrassa 08222, Spain
关键词
BiVO4; spin-coating; water splitting; catalysis; hydrogen; PULSED-LASER DEPOSITION; OPTICAL-PROPERTIES; CHARGE SEPARATION; HYDROGEN; FILM; PERFORMANCE; DRIVEN; STATES;
D O I
10.1021/acsaem.3c02775
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This work aims to understand the spin-coating growth process of BiVO4 photoanodes from a photon absorption and conversion perspective. BiVO4 layers with thicknesses ranging from 7 to 48 nm and the role of a thin (<5 nm) SnO2 hole-blocking layer have been studied. The internal absorbed photon-to-current efficiency (APCE) is found to be nonconstant, following a specific dependence of the internal charge separation and extraction on the increasing thickness. This APCE variation with BiVO4 thickness is key for precise computational simulation of light propagation in BiVO4 based on the transfer matrix method. Results are used for accurate incident photon-to-current efficiency (IPCE) prediction and will help in computational modeling of BiVO(4 )and other metal oxide photoanodes. This establishes a method to obtain the sample's thickness by knowing its IPCE, accounting for the change in the internal APCE conversion. Moreover, an improvement in fill factor and photogenerated voltage is attributed to the intermediate SnO2 hole-blocking layer, which was shown to have a negligible optical effect but to enhance charge separation and extraction for the lower energetic wavelengths. A Mott-Schottky analysis was used to confirm a photovoltage shift of 90 mV of the flat-band potential.
引用
收藏
页码:1792 / 1801
页数:10
相关论文
共 50 条
  • [21] The aerosol-assisted chemical vapour deposition of Mo-doped BiVO4 photoanodes for solar water splitting: an experimental and computational study
    Zhao, Shaobin
    Jia, Chenglin
    Shen, Xinyi
    Li, Ruohao
    Oldham, Louise
    Moss, Benjamin
    Tam, Brian
    Pike, Sebastian
    Harrison, Nicholas
    Ahmad, Ehsan
    Kafizas, Andreas
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (39) : 26645 - 26666
  • [22] Cobalt Pyrophosphate Nanosheets Effectively Boost Photoelectrochemical Water Splitting Efficiency of BiVO4 Photoanodes
    Wen, Xiang
    Zhou, Guyu
    Liu, Jikai
    CATALYSIS LETTERS, 2024, 154 (01) : 23 - 33
  • [23] Cobalt Pyrophosphate Nanosheets Effectively Boost Photoelectrochemical Water Splitting Efficiency of BiVO4 Photoanodes
    Xiang Wen
    Guyu Zhou
    Jikai Liu
    Catalysis Letters, 2024, 154 : 23 - 33
  • [24] Enhanced solar water splitting of BiVO4 photoanodes by in situ surface band edge modulation
    Song, Kai
    Hou, Huilin
    Gong, Chuangchuang
    Gao, Fengmei
    Zhang, Dongdong
    Zhi, Fang
    Yang, Weiyou
    He, Fang
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (42) : 22561 - 22570
  • [25] Mo-doped BiVO4 nanotextured pillars as efficient photoanodes for solar water splitting
    Kim, Min-Woo
    Kim, Karam
    Ohm, Tae Yoon
    Joshi, Bhavana
    Samuel, Edmund
    Swihart, Mark T.
    Yoon, Hyun
    Park, Hyunwoong
    Yoon, Sam S.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 726 : 1138 - 1146
  • [26] Dual textured BiVO4/Sb:SnO2 heterostructure for enhanced photoelectrochemical Water-splitting
    Jeong, Yoo Jae
    Hwang, Sung Won
    Chaikasetsin, Settasit
    Han, Hyun Soo
    Cho, In Sun
    CHEMICAL ENGINEERING JOURNAL, 2022, 435
  • [27] Dual Heterojunctions and Nanobowl Morphology Engineered BiVO4 Photoanodes for Enhanced Solar Water Splitting
    Ren, Kexin
    Zhou, Jiayi
    Wu, Zihao
    Sun, Qi
    Qi, Limin
    SMALL, 2023,
  • [28] Formation and suppression of defects during heat treatment of BiVO4 photoanodes for solar water splitting
    Lamers, Marlene
    Fiechter, Sebastian
    Friedrich, Dennis
    Abdi, Fatwa F.
    van de Krol, Roel
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (38) : 18694 - 18700
  • [29] Dual Heterojunctions and Nanobowl Morphology Engineered BiVO4 Photoanodes for Enhanced Solar Water Splitting
    Ren, Kexin
    Zhou, Jiayi
    Wu, Zihao
    Sun, Qi
    Qi, Limin
    SMALL, 2024, 20 (01)
  • [30] Enhancing photostability of BiVO4 photoanodes for solar water oxidation
    Choi, Kyoung-Shin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253