Multiobjective evolutionary search of the latent space of Generative Adversarial Networks for human face generation

被引:0
|
作者
Correa, Jairo [1 ]
Mignaco, Jimena [1 ]
Rey, Gonzalo [1 ]
Machin, Benjamin [1 ]
Nesmachnow, Sergio [1 ]
Toutouh, Jamal [2 ]
机构
[1] Univ Republica, Montevideo, Uruguay
[2] Univ Malaga, ITIS Software, Malaga, Spain
关键词
generative adversarial networks; multiobjective optimization; evolutionary latent space exploration; human face image generation;
D O I
10.1145/3583133.3596391
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article presents an explicit multiobjective evolutionary approach for synthetic human face image generation, exploring the latent space of generative adversarial networks. The approach considers the similarity to a target image and the race attribute. The evolutionary search explores the real-coded latent space of Style-GAN3 and applies DeepFace for similarity and race evaluation. Realistic images are generated, properly exploring the search space and the Pareto front of the problem. The generated images pose a challenge to the automatic detection system in DeepFace. Results are applicable to enhance the security of face recognition systems.
引用
收藏
页码:1768 / 1776
页数:9
相关论文
共 50 条
  • [41] Optimized Generative Adversarial Networks for Adversarial Sample Generation
    Alghazzawi, Daniyal M.
    Hasan, Syed Hamid
    Bhatia, Surbhi
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (02): : 3877 - 3897
  • [42] Dual linear latent space constrained generative adversarial networks for hyperspectral image classification
    Mou, Kefen
    Gao, Sha
    Deveci, Muhammet
    Kadry, Seifedine
    APPLIED SOFT COMPUTING, 2025, 174
  • [43] A Latent Space Understandable Generative Adversarial Network: SelfExGAN
    Liu, Yongjie
    Wang, Qianlong
    Gu, Yanlei
    Kamijo, Shunsuke
    2017 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING - TECHNIQUES AND APPLICATIONS (DICTA), 2017, : 353 - 360
  • [44] HpGAN: Sequence Search With Generative Adversarial Networks
    Zhang, Mingxing
    Zhou, Zhengchun
    Li, Lanping
    Liu, Zilong
    Yang, Meng
    Feng, Yanghe
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (08) : 4944 - 4956
  • [45] Latent Fingerprint Enhancement using Generative Adversarial Networks
    Joshi, Indu
    Anand, Adithya
    Vatsa, Mayank
    Singh, Richa
    Roy, Sumantra Dutta
    Kalra, Prem Kumar
    2019 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2019, : 895 - 903
  • [46] Improving generative adversarial networks with simple latent distributions
    Shufei Zhang
    Kaizhu Huang
    Zhuang Qian
    Rui Zhang
    Amir Hussain
    Neural Computing and Applications, 2021, 33 : 13193 - 13203
  • [47] Optimizing the Latent Space of Generative Networks
    Bojanowski, Piotr
    Joulin, Armand
    Paz, David Lopez
    Szlam, Arthur
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [48] Latent Dirichlet allocation based generative adversarial networks
    Pan, Lili
    Cheng, Shen
    Liu, Jian
    Tang, Peijun
    Wang, Bowen
    Ren, Yazhou
    Xu, Zenglin
    NEURAL NETWORKS, 2020, 132 : 461 - 476
  • [49] Improving generative adversarial networks with simple latent distributions
    Zhang, Shufei
    Huang, Kaizhu
    Qian, Zhuang
    Zhang, Rui
    Hussain, Amir
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (20): : 13193 - 13203
  • [50] Continuous Emotions: Exploring Label Interpolation in Conditional Generative Adversarial Networks for Face Generation
    Mertes, Silvan
    Lingenfelser, Florian
    Kiderle, Thomas
    Dietz, Michael
    Diab, Lama
    Andre, Elisabeth
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON DEEP LEARNING THEORY AND APPLICATIONS (DELTA), 2021, : 132 - 139