Hierarchical few-shot learning with feature fusion driven by data and knowledge

被引:1
|
作者
Wu, Zhiping [1 ,2 ]
Zhao, Hong [1 ,2 ]
机构
[1] Minnan Normal Univ, Sch Comp Sci, Zhangzhou 363000, Fujian, Peoples R China
[2] Fujian Prov Univ, Key Lab Data Sci & Intelligence Applicat, Zhangzhou 363000, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Few-shot learning; Hierarchical classification; Granular computing; Feature fusion; Data- and knowledge-driven;
D O I
10.1016/j.ins.2023.119012
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Few-shot learning (FSL) aims to use only a few samples to learn a model and utilizes that model to identify unseen classes. Recent, metric-based feature fusion methods mainly focus on the fusion of inter-layer features and show superior performance in solving FSL problems. However, due to the data scarcity in FSL, existing methods still face severe challenges in obtaining high-quality sample features for the improvement of classification performance. In this paper, we propose a hierarchical metric FSL model with comprehensive feature fusion driven by data and knowledge (HFFDK), which is based on intra-layer channel-feature and hierarchical class structure perspectives. First, we utilize the network hierarchy to construct an intra-layer channel feature fusion, which transfers the intra-layer fused features of the higher layer to the lower layer. The model can extract high-quality sample features in a data-driven manner. Moreover, we focus on different levels of granularity to obtain various levels of information, while hierarchical class structures can provide both coarse- and fine-grained information in a knowledge-driven manner. Then, we utilize the coarse-grained information to assist fine-grained recognition. Finally, we optimize hierarchical FSL with coarse- and fine-grained relational constraints and similarity measures among samples. Experiments on four benchmark datasets show that HFFDK achieves state-of-the-art performance.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Complete feature learning and consistent relation modeling for few-shot knowledge graph completion
    Liu, Jin
    Fan, ChongFeng
    Zhou, Fengyu
    Xu, Huijuan
    Expert Systems with Applications, 2024, 238
  • [32] Complete feature learning and consistent relation modeling for few-shot knowledge graph completion
    Liu, Jin
    Fan, Chongfeng
    Zhou, Fengyu
    Xu, Huijuan
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [33] A fusion spatial attention approach for few-shot learning
    Song, Heda
    Deng, Bowen
    Pound, Michael
    Ozcan, Ender
    Triguero, Isaac
    INFORMATION FUSION, 2022, 81 : 187 - 202
  • [34] Few-Shot Few-Shot Learning and the role of Spatial Attention
    Lifchitz, Yann
    Avrithis, Yannis
    Picard, Sylvaine
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 2693 - 2700
  • [35] Knowledge transfer based hierarchical few-shot learning via tree-structured knowledge graph
    Zhong Zhang
    Zhiping Wu
    Hong Zhao
    Minjie Hu
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 281 - 294
  • [36] Knowledge transfer based hierarchical few-shot learning via tree-structured knowledge graph
    Zhang, Zhong
    Wu, Zhiping
    Zhao, Hong
    Hu, Minjie
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (01) : 281 - 294
  • [37] Self-similarity feature based few-shot learning via hierarchical relation network
    Yangqing Zhong
    Yuling Su
    Hong Zhao
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 4237 - 4249
  • [38] Enhancing few-shot lifelong learning through fusion of cross-domain knowledge
    Zheng, knowledge Yaoyue
    Zhang, Xuetao
    Tian, Zhiqiang
    Du, Shaoyi
    INFORMATION FUSION, 2025, 115
  • [39] Few-Shot Learning With Multi-Granularity Knowledge Fusion and Decision-Making
    Su, Yuling
    Zhao, Hong
    Zheng, Yifeng
    Wang, Yu
    IEEE TRANSACTIONS ON BIG DATA, 2024, 10 (04) : 486 - 497
  • [40] Self-similarity feature based few-shot learning via hierarchical relation network
    Zhong, Yangqing
    Su, Yuling
    Zhao, Hong
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (12) : 4237 - 4249