A Novel No-Reference Quality Assessment Metric for Stereoscopic Images with Consideration of Comprehensive 3D Quality Information

被引:1
|
作者
Shen, Liquan [1 ]
Yao, Yang [1 ]
Geng, Xianqiu [1 ]
Fang, Ruigang [2 ]
Wu, Dapeng [2 ]
机构
[1] Shanghai Univ, Shanghai Inst Adv Commun & Data Sci, Shanghai 200444, Peoples R China
[2] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32603 USA
基金
中国国家自然科学基金;
关键词
no reference; stereoscopic image quality assessment; spatial domain; transform domain; stereo visual information; natural scene statistics; machine learning; VISUAL-ATTENTION; COMPRESSION; MODELS;
D O I
10.3390/s23136230
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Recently, stereoscopic image quality assessment has attracted a lot attention. However, compared with 2D image quality assessment, it is much more difficult to assess the quality of stereoscopic images due to the lack of understanding of 3D visual perception. This paper proposes a novel no-reference quality assessment metric for stereoscopic images using natural scene statistics with consideration of both the quality of the cyclopean image and 3D visual perceptual information (binocular fusion and binocular rivalry). In the proposed method, not only is the quality of the cyclopean image considered, but binocular rivalry and other 3D visual intrinsic properties are also exploited. Specifically, in order to improve the objective quality of the cyclopean image, features of the cyclopean images in both the spatial domain and transformed domain are extracted based on the natural scene statistics (NSS) model. Furthermore, to better comprehend intrinsic properties of the stereoscopic image, in our method, the binocular rivalry effect and other 3D visual properties are also considered in the process of feature extraction. Following adaptive feature pruning using principle component analysis, improved metric accuracy can be found in our proposed method. The experimental results show that the proposed metric can achieve a good and consistent alignment with subjective assessment of stereoscopic images in comparison with existing methods, with the highest SROCC (0.952) and PLCC (0.962) scores being acquired on the LIVE 3D database Phase I.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] No-Reference Quality Metric of Contrast-Distorted Images Based on Information Maximization
    Gu, Ke
    Lin, Weisi
    Zhai, Guangtao
    Yang, Xiaokang
    Zhang, Wenjun
    Chen, Chang Wen
    IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (12) : 4559 - 4565
  • [32] A NOVEL NO-REFERENCE IMAGE QUALITY ASSESSMENT METRIC BASED ON STATISTICAL INDEPENDENCE
    Chu, Ying
    Mou, Xuanqin
    Hong, Wei
    Ji, Zhen
    2012 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2012,
  • [33] A novel metric for H.264/AVC no-reference quality assessment
    Slanina, M.
    Ricny, V.
    Forchheimer, R.
    2007 14TH INTERNATIONAL WORKSHOP ON SYSTEMS, SIGNALS, & IMAGE PROCESSING & EURASIP CONFERENCE FOCUSED ON SPEECH & IMAGE PROCESSING, MULTIMEDIA COMMUNICATIONS & SERVICES, 2007, : 316 - +
  • [34] No-Reference Quality Assessment of 3D Prints Based on the GLCM Analysis
    Okarma, Krzysztof
    Fastowicz, Jaroslaw
    2016 21ST INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2016, : 788 - 793
  • [35] NO-REFERENCE QUALITY ASSESSMENT OF STEREOSCOPIC IMAGES BASED ON BINOCULAR COMBINATION OF LOCAL FEATURES STATISTICS
    Fan, Yu
    Larabi, Mohamed-Chaker
    Cheikh, Faouzi Alaya
    Fernandez-Maloigne, Christine
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 3538 - 3542
  • [36] A No-Reference Image Quality Assessment Metric by Multiple Characteristics of Light Fight Images
    Shan, Liang
    An, Ping
    Meng, Chunli
    Huang, Xinpeng
    Yang, Chao
    Shen, Liquan
    IEEE ACCESS, 2019, 7 : 127217 - 127229
  • [37] A No-Reference Image Quality Comprehensive Assessment Method
    Fan, Yuan-Yuan
    Sang, Ying-Jun
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2021, 35 (04)
  • [38] No-Reference Stereoscopic Image Quality Assessment Based on Image Distortion and Stereo Perceptual Information
    Shen, Liquan
    Fang, Ruigang
    Yao, Yang
    Geng, Xianqiu
    Wu, Dapeng
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2019, 3 (01): : 59 - 72
  • [39] No-Reference Image Quality Assessment for Facial Images
    Bhattacharjee, Debalina
    Prakash, Surya
    Gupta, Phalguni
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE, 2012, 6839 : 594 - 601
  • [40] No-Reference Quality Assessment for JPEG Compressed Images
    Zhu, Yucheng
    Zhai, Guangtao
    Gu, Ke
    Zhu, Wenhan
    2017 NINTH INTERNATIONAL CONFERENCE ON QUALITY OF MULTIMEDIA EXPERIENCE (QOMEX), 2017,