Sustainable microcrystalline cellulose-based activated carbons for a greener carbon capture at post-combustion conditions

被引:5
|
作者
Biti, Simba [1 ]
Mccue, Alan [2 ]
Dionisi, Davide [1 ]
Graca, Ines [1 ]
Martin, Claudia Fernandez [1 ,3 ]
机构
[1] Univ Aberdeen, Sch Engn, Chem Proc & Mat Engn Grp, Aberdeen AB24 3UE, Scotland
[2] Univ Aberdeen, Dept Chem, Aberdeen AB24 3UE, Scotland
[3] Univ Aberdeen, Ctr Energy Transit, Aberdeen, Scotland
关键词
CO2; CAPTURE; ADSORBENTS; ADSORPTION; CAPACITY; BIOMASS; TEMPERATURE; CHAR;
D O I
10.1016/j.ijggc.2023.103876
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Using lignocellulosic biomass-based sorbents for CO2 capture potentially offers a sustainable solution to combatting global warming effects and preserving the environment through reduction of greenhouse gas emissions, mainly carbon dioxide. In this work, activated carbons were produced from microcrystalline cellulose using a simple, moderate physical activation procedure. Activations produced at 10, 20 and 30% burn-off along with the original biochar were characterised for their physical and chemical properties, and ability to capture CO2 by adsorption. CO2 isotherms showed that the produced activated carbon with a burn-off of 30 wt% produced the highest CO2 adsorption capacity (2.15 mmol/g at 25 degrees C and 101.3 kPa). Isosteric heats of adsorption of all sorbents ranged from 38.4 to 45.2 kJ/mol, which indicates that strong bonding is present on the surface of the developed sorbents. The highest CO2 adsorption capacity (1.59 mmol/g at 25 degrees C and 101.3 kPa) under dynamic adsorption conditions at was also exhibited by the sorbent with 30 wt% burn-off. This sample also showed a total CO2 adsorption capacity of 15.8 mmol/g over 10 adsorption/desorption cycles and similar adsorption-desorption behaviour to that of commercial sorbent Norit R2030CO2 over 10 cycles, at the conditions tested. Additionally, all sorbents maintained a stable CO2 capture capacity over 10 adsorption-desorption cycles. The results obtained are encouraging for the further development of microcrystalline cellulose-based activated carbons for CO2 capture.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Progress in polymers of intrinsic microporosity for post-combustion carbon capture
    Wang, Yali
    Wang, Jingxiang
    Sun, Luxin
    Ma, Xiaohua
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 363
  • [42] Amine reclaiming technologies in post-combustion carbon dioxide capture
    Tielin Wang
    Jon Hovland
    Klaus J.Jens
    Journal of Environmental Sciences, 2015, (01) : 276 - 289
  • [43] Improvement of post-combustion carbon capture process in retrofit case
    Nagy, Tibor
    Moioli, Stefania
    Lange, Stefano
    Pellegrini, Laura A.
    Mizsey, Peter
    13TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-13, 2017, 114 : 1567 - 1575
  • [44] A radiofrequency heated reactor system for post-combustion carbon capture
    Fernandez, Javier
    Sotenko, Maria
    Derevschikov, Vladimir
    Lysikov, Anton
    Rebrov, Evgeny V.
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2016, 108 : 17 - 26
  • [45] Post-combustion capture and other Carbon Capture and Sequestration (CCS) technologies: A review
    Ibigbami, Olayinka Abidemi
    Onilearo, Oluwatimilehin Daniel
    Akinyeye, Richard Odunayo
    ENVIRONMENTAL QUALITY MANAGEMENT, 2024, 34 (01)
  • [46] Adsorption-based post-combustion carbon capture assisted by synergetic heating and cooling
    Liu, W.
    Ji, Y.
    Huang, Y.
    Zhang, X.J.
    Wang, T.
    Fang, M.X.
    Jiang, L.
    Renewable and Sustainable Energy Reviews, 2024, 191
  • [47] Modeling and analysis of process configurations for solvent-based post-combustion carbon capture
    Sharma, Manish
    Qadir, Abdul
    Khalilpour, Rajab
    Abbas, Ali
    ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, 2015, 10 (05) : 764 - 780
  • [48] Adsorption-based post-combustion carbon capture assisted by synergetic heating and cooling
    Liu, W.
    Ji, Y.
    Huang, Y.
    Zhang, X. J.
    Wang, T.
    Fang, M. X.
    Jiang, L.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 191
  • [49] An evaluation of carbon-based adsorbents for post-combustion CO2 capture
    Yapici, Ece
    Akgun, Hasret
    Ozkan, Aysun
    Gunkaya, Zerrin
    Banar, Mufide
    INTERNATIONAL JOURNAL OF GLOBAL WARMING, 2023, 29 (03) : 265 - 277
  • [50] Carbon monoliths in adsorption-based post-combustion CO2 capture
    Querejeta, N.
    Plaza, M. G.
    Rubiera, F.
    Pevida, C.
    Avery, T.
    Tennisson, S. R.
    13TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-13, 2017, 114 : 2341 - 2352