Constructing K-optimal designs for regression models

被引:2
|
作者
Yue, Zongzhi [1 ]
Zhang, Xiaoqing [1 ]
van den Driessche, P. [1 ]
Zhou, Julie [1 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 2Y2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Optimal regression design; Fourier regression; Condition number; Convex optimization; Matrix norm; Second-order response model; CONDITION NUMBER;
D O I
10.1007/s00362-022-01317-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study approximate K-optimal designs for various regression models by minimizing the condition number of the information matrix. This minimizes the error sensitivity in the computation of the least squares estimator of regression parameters and also avoids the multicollinearity in regression. Using matrix and optimization theory, we derive several theoretical results of K-optimal designs, including convexity of K-optimality criterion, lower bounds of the condition number, and symmetry properties of K-optimal designs. A general numerical method is developed to find K-optimal designs for any regression model on a discrete design space. In addition, specific results are obtained for polynomial, trigonometric and second-order response models.
引用
收藏
页码:205 / 226
页数:22
相关论文
共 50 条
  • [31] CVX-based algorithms for constructing various optimal regression designs
    Wong, Weng Kee
    Zhou, Julie
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2019, 47 (03): : 374 - 391
  • [32] A-optimal designs for heteroscedastic multifactor regression models
    Rodriguez, Carmelo
    Ortiz, Isabel
    Martinez, Ignacio
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (03) : 757 - 771
  • [33] R-optimal designs for trigonometric regression models
    He, Lei
    Yue, Rong-Xian
    STATISTICAL PAPERS, 2020, 61 (05) : 1997 - 2013
  • [34] OPTIMAL DISCRIMINATING DESIGNS FOR SEVERAL COMPETING REGRESSION MODELS
    Braess, Dietrich
    Dette, Holger
    ANNALS OF STATISTICS, 2013, 41 (02): : 897 - 922
  • [35] D-optimal designs for Poisson regression models
    Wang, Yanping
    Myers, Raymond H.
    Smith, Eric. P.
    Ye, Keying
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2006, 136 (08) : 2831 - 2845
  • [36] OPTIMAL EXPERIMENTAL DESIGNS FOR INVERSE QUADRATIC REGRESSION MODELS
    Dette, Holger
    Kiss, Christine
    STATISTICA SINICA, 2009, 19 (04) : 1567 - 1586
  • [37] Optimal designs for regression models with forced measurements at baseline
    Fedorov, VV
    Leonov, S
    MODA 7 - ADVANCES IN MODEL-ORIENTED DESIGN AND ANALYSIS, PROCEEDINGS, 2004, : 61 - 69
  • [38] Constrained optimal discrimination designs for Fourier regression models
    Stefanie Biedermann
    Holger Dette
    Philipp Hoffmann
    Annals of the Institute of Statistical Mathematics, 2009, 61 : 143 - 157
  • [39] D-OPTIMAL DESIGNS FOR POISSON REGRESSION MODELS
    Russell, K. G.
    Woods, D. C.
    Lewis, S. M.
    Eccleston, J. A.
    STATISTICA SINICA, 2009, 19 (02) : 721 - 730
  • [40] On optimal designs for high dimensional binary regression models
    Torsney, B
    Gunduz, N
    OPTIMUM DESIGN 2000, 2001, 51 : 275 - 285