Determination of the lactose content in low-lactose milk using Fourier-transform infrared spectroscopy (FTIR) and convolutional neural network

被引:11
|
作者
Ribeiro, Daniela C. S. Z. [1 ]
Neto, Habib Asseiss [2 ]
Lima, Juliana S. [1 ]
de Assis, Debora C. S. [1 ]
Keller, Kelly M. [1 ]
Campos, Sergio V. A. [3 ]
Oliveira, Daniel A. [4 ]
Fonseca, Leorges M. [1 ]
机构
[1] Univ Fed Minas Gerais UFMG, Sch Vet Med, Belo Horizonte, MG, Brazil
[2] Fed Inst Mato Grosso Sul, Tres Lagoas, MS, Brazil
[3] Univ Fed Minas Gerais UFMG, Dept Comp Sci, Belo Horizonte, MG, Brazil
[4] Ezequiel Dias Fdn FUNED MG, Belo Horizonte, MG, Brazil
关键词
Low; -lactose; Milk; Artificial neural network; Convolutional neural network; Deep learning; QUANTIFICATION;
D O I
10.1016/j.heliyon.2023.e12898
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Demand for low lactose milk and milk products has been increasing worldwide due to the high number of people with lactose intolerance. These low lactose dairy foods require fast, low-cost and efficient methods for sugar quantification. However, available methods do not meet all these requirements. In this work, we propose the association of FTIR (Fourier Transform Infrared) spectroscopy with artificial intelligence to identify and quantify residual lactose and other sugars in milk. Convolutional neural networks (CNN) were built from the infrared spectra without preprocessing the data using hyperparameter adjustment and saliency map. For the quantitative prediction of the sugars in milk, a regression model was proposed, while for the qualitative assessment, a classification model was used. Raw, pasteurized and ultra-high temperature (UHT) milk was added with lactose, glucose, and galactose in six concentrations (0.1-7.0 mg mL-1) and, in total, 432 samples were submitted to convolutional neural network. Accuracy, precision, sensitivity, specificity, root mean square error, mean square error, mean absolute error, and coefficient of determination (R2) were used as evaluation parameters. The algorithms indicated a predictive capacity (accuracy) above 95% for classification, and R2 of 81%, 86%, and 92% for respectively, lactose, glucose, and galactose quantification. Our results showed that the associa-tion of FTIR spectra with artificial intelligence tools, such as CNN, is an efficient, quick, and low-cost methodology for quantifying lactose and other sugars in milk.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] DETERMINATION OF PHOSPHOLIPID CONTENT OF INTRAMUSCULAR FAT BY FOURIER-TRANSFORM INFRARED-SPECTROSCOPY
    VILLE, H
    MAES, G
    DESCHRIJVER, R
    SPINCEMAILLE, G
    ROMBOUTS, G
    GEERS, R
    MEAT SCIENCE, 1995, 41 (03) : 283 - 291
  • [22] Use of infrared spectroscopy to estimate the lactose content in hydrolyzed milk.
    Ribeiro, D. C. S. Z.
    Tavares, W. L. F.
    Lima, J. S.
    Asseiss Neto, H.
    Campos, S. V. A.
    Fonseca, L. M.
    JOURNAL OF DAIRY SCIENCE, 2019, 102 : 38 - 38
  • [23] Monitoring of lactose hydrolysis in milk by single-bounce attenuated total reflectance Fourier transform infrared spectroscopy
    Cocciardi, RA
    Ismail, AA
    Van De Voort, FR
    Sedman, J
    MILCHWISSENSCHAFT-MILK SCIENCE INTERNATIONAL, 2004, 59 (7-8): : 403 - +
  • [24] Characterization of an outbreak caused by Elizabethkingia miricola using Fourier-transform infrared (FTIR) spectroscopy
    Rodriguez-Temporal, David
    Garcia-Canada, Javier Enrique
    Candela, Ana
    Oteo-Iglesias, Jesus
    Serrano-Lobo, Julia
    Perez-Vazquez, Maria
    Rodriguez-Sanchez, Belen
    Cercenado, Emilia
    EUROPEAN JOURNAL OF CLINICAL MICROBIOLOGY & INFECTIOUS DISEASES, 2024, 43 (04) : 797 - 803
  • [25] Characterization of an outbreak caused by Elizabethkingia miricola using Fourier-transform infrared (FTIR) spectroscopy
    David Rodríguez-Temporal
    Javier Enrique García-Cañada
    Ana Candela
    Jesús Oteo-Iglesias
    Julia Serrano-Lobo
    María Pérez-Vázquez
    Belén Rodríguez-Sánchez
    Emilia Cercenado
    European Journal of Clinical Microbiology & Infectious Diseases, 2024, 43 : 797 - 803
  • [26] EPITAXIAL LAYER THICKNESS MEASUREMENTS USING FOURIER-TRANSFORM INFRARED-SPECTROSCOPY (FTIR)
    MOELLERING, RA
    BAUER, LB
    BALESTRA, CL
    JOURNAL OF ELECTRONIC MATERIALS, 1990, 19 (02) : 181 - 185
  • [27] ANALYTICAL APPLICATIONS OF PHOTO-ACOUSTIC SPECTROSCOPY USING FOURIER-TRANSFORM INFRARED (FTIR)
    MEHICIC, M
    KOLLAR, RG
    GRASSELLI, JG
    PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 1981, 289 : 99 - 101
  • [28] Fourier-Transform Infrared Spectroscopy (FTIR) for Investigation of Human Carcinoma and Leukaemia
    Amjad, M.
    Ullah, H.
    Andleeb, F.
    Batool, Z.
    Nazir, A.
    Gilanie, G.
    Lasers in Engineering, 2021, 51 (01): : 217 - 233
  • [29] Fourier-transform infrared spectroscopy (FTIR) analysis of triclinic and hexagonal birnessites
    Ling, Florence T.
    Post, Jeffrey E.
    Heaney, Peter J.
    Kubicki, James D.
    Santelli, Cara M.
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2017, 178 : 32 - 46
  • [30] PHOTO-ACOUSTIC FOURIER-TRANSFORM INFRARED (FTIR) SPECTROSCOPY OF SOLIDS
    VIDRINE, DW
    PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 1981, 289 : 355 - 360