Linear operators preserving strong majorization of (0,1)-matrices

被引:0
|
作者
Guterman, Alexander [1 ,2 ,3 ]
Shteyner, Pavel [1 ,2 ,4 ]
机构
[1] Bar Ilan Univ, IL-5290002 Ramat Gan, Israel
[2] Moscow Ctr Fundamental & Appl Math, Moscow 119991, Russia
[3] Lomonosov Moscow State Univ, Moscow 119991, Russia
[4] Moscow Ctr Continuous Math Educ, Moscow 119002, Russia
基金
俄罗斯科学基金会;
关键词
Matrix majorization; Vector majorization; Linear preservers; WEAK;
D O I
10.1016/j.laa.2022.10.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain a complete characterization of linear operators that preserve strong majorization on (0, 1)-matrices. To do this we introduce a new matrix invariant of combinatorial nature. We call this invariant an intersection index of a matrix and develop a method to characterize the matrix maps based on the analysis of its properties. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:116 / 150
页数:35
相关论文
共 50 条
  • [41] Totally nonnegative (0,1)-matrices
    Brualdi, Richard A.
    Kirkland, Steve
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (07) : 1650 - 1662
  • [42] Double orderings of (0,1)-matrices
    Mader, A
    Mutzbauer, O
    ARS COMBINATORIA, 2001, 61 : 81 - 95
  • [43] CHARACTERIZATION OF CONVERTIBLE (0,1)-MATRICES
    LITTLE, CHC
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1975, 18 (03) : 187 - 208
  • [44] Permanents of Hessenberg (0,1)-matrices
    Olesky, DD
    Shader, B
    van den Driessche, P
    ELECTRONIC JOURNAL OF COMBINATORICS, 2005, 12 (01):
  • [45] ON THE ENUMERATION OF RECTANGULAR (0,1)-MATRICES
    HENDRICKSON, JA
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1995, 51 (2-4) : 291 - 313
  • [46] PROPERTIES OF (0,1)-MATRICES WITH NO TRIANGLES
    ANSTEE, RP
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1980, 29 (02) : 186 - 198
  • [47] Linear Operators Preserving and Converting Majorizations of the (0, 1)-Vectors
    Shteyner P.M.
    Journal of Mathematical Sciences, 2023, 272 (4) : 615 - 624
  • [48] Strong majorization for hermitian matrices
    Institute of Computer Science, Czech Academy of Sciences, Pod vodarenskou vezi 2, 182 07 Praha 8, Czech Republic
    Linear Algebra Its Appl, 1-3 (281-301):
  • [49] Optimal (0,1)-matrix completion with majorization ordered objectives
    Mo, Yanfang
    Chen, Wei
    You, Keyou
    Qiu, Li
    AUTOMATICA, 2024, 160
  • [50] FUNCTIONALS-PRESERVING COSINE FAMILIES GENERATED BY LAPLACE OPERATORS IN C[0,1]
    Bobrowski, Adam
    Gregosiewicz, Adam
    Murat, Malgorzata
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (07): : 1877 - 1895