Fe isotope fractionation caused by phase transition of FeS and implications for Fe isotope signatures of the mantle and core

被引:3
|
作者
Liu, Shanqi [1 ,2 ]
Li, Yongbing [3 ]
Yang, Zhiming [4 ]
Liu, Jianming [5 ]
机构
[1] Sun Yat Sen Univ, Sch Earth Sci & Engn, Guangzhou 510275, Peoples R China
[2] Southern Marine Sci & Engn Guangdong Lab Zhuhai, Zhuhai 519080, Peoples R China
[3] Univ Chinese Acad Sci, Key Lab Computat Geodynam, Beijing 100049, Peoples R China
[4] Chinese Acad Geol Sci, Inst Geol, Beijing 100037, Peoples R China
[5] Chinese Acad Sci, Inst Geol & Geophys, Key Lab Mineral Resources, Beijing 100029, Peoples R China
关键词
Fe isotope fractionation; FeS; Silicates; Phase transition; First-principles calculations; POST-PEROVSKITE PHASE; HIGH-PRESSURE; HIGH-TEMPERATURE; 1ST-PRINCIPLES CALCULATIONS; EQUILIBRIUM SILICON; INTERNAL STRUCTURE; STABLE-ISOTOPES; IRON-METEORITES; RAMAN-SPECTRA; AB-INITIO;
D O I
10.1016/j.gca.2022.10.042
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Iron is the most important component of the cores of terrestrial planets, and iron sulfide (FeS) is one of the preferred candidates present in these cores. FeS is also ubiquitous in Earth's crust, peridotites, and extraterrestrial samples. Knowledge of the phase stability of FeS and Fe isotope fractionation between FeS phases and mantle silicates is of great importance for understanding the interior of the Earth and terrestrial planets. In this study, first-principles methods were used to study the pressure-dependent phase stability of FeS and equilibrium Fe isotope fractionation in FeS, hexagonal close-packed (hcp) Fe, and mantle silicates at the pressure of Earth's interior. FeS underwent four phase transitions at 0 K. The first is the transition from FeS I to FeS II at 2.8 GPa, the second from FeS II to FeS III at 7.5 GPa, the third from FeS III to FeS VI at 74.2 GPa, and the fourth from FeS VI to FeS VII at 122.2 GPa. Apart from the fact that the transition from FeS I to FeS II causes negligible Fe isotope fractionation, other phase transitions can cause measurable Fe isotope fractionation at corresponding pressures along the geotherm. Fe isotopes exhibit measurable fractionation between FeS and mantle silicates under mantle pressure-temperature conditions. Each phase was more enriched in heavy Fe with increasing depth in the pressure range of 7.5-90 GPa. If the silicate mantle is enriched in heavy Fe relative to the core or Fe has negligible isotope fractionation between them under the core-mantle boundary (CMB) conditions of the Earth, the Fe2+/(Fe2++Mg) in (Fe2+, Mg)SiO3 post-perovskite is less than 50%. At the temperature-pressure conditions of Earth's core, equilibrium Fe isotope fractionation between hcp Fe and FeS VII can be neglected. FeS III is more likely to exist in the Martian core relative to FeS VI. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页码:38 / 50
页数:13
相关论文
共 50 条
  • [21] Modes of planetary-scale Fe isotope fractionation
    Schoenberg, Ronny
    von Blanckenburg, Friedhelm
    EARTH AND PLANETARY SCIENCE LETTERS, 2006, 252 (3-4) : 342 - 359
  • [22] Inter-mineral Fe isotope variations in mantle-derived rocks and implications for the Fe geochemical cycle
    Beard, BL
    Johnson, CM
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2004, 68 (22) : 4727 - 4743
  • [23] Mechanisms of Fe isotope fractionation during dissimilatory Fe(III) reduction (DIR)
    Crosby, HA
    Johnson, CM
    Beard, BL
    Roden, EE
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2005, 69 (10) : A217 - A217
  • [24] Chromatographic extraction of Fe from seawater and its impact on Fe isotope fractionation
    Warwick, PE
    Severmann, S
    Palmer, MR
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2002, 66 (15A) : A824 - A824
  • [25] Demonstrating equilibrium Fe-isotope fractionation in Fe-Cl solutions
    Hill, P. S.
    Schauble, E. A.
    Young, E. D.
    Shahar, A.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2007, 71 (15) : A405 - A405
  • [26] Iron isotope fractionation during adsorption of Fe(II) on Fe(III) oxides
    Teutsch, N
    von Gunten, U
    Hofstetter, TB
    Halliday, AN
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2004, 68 (11) : A361 - A361
  • [27] Kinetic and equilibrium Fe isotope fractionation between aqueous Fe(III) and hematite
    Skulan, JL
    Beard, BL
    Johnson, CM
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2002, 66 (17) : 2995 - 3015
  • [28] Iron isotope fractionation during Fe(II) and Fe(III) adsorption on cyanobacteria
    Mulholland, Daniel S.
    Poitrasson, Franck
    Shirokova, Liudmila S.
    Gonzalez, Aridane G.
    Pokrovsky, Oleg S.
    Boaventura, Geraldo R.
    Vieira, Lucieth C.
    CHEMICAL GEOLOGY, 2015, 400 : 24 - 33
  • [29] Equilibrium Iron Isotope Fractionation at Core-Mantle Boundary Conditions
    Polyakov, Veniamin B.
    SCIENCE, 2009, 323 (5916) : 912 - 914
  • [30] Nitrogen isotope fractionation during terrestrial core-mantle separation
    Li, Y.
    Marty, B.
    Shcheka, S.
    Zimmermann, L.
    Keppler, H.
    GEOCHEMICAL PERSPECTIVES LETTERS, 2016, 2 (02) : 138 - +