Fe isotope fractionation caused by phase transition of FeS and implications for Fe isotope signatures of the mantle and core

被引:3
|
作者
Liu, Shanqi [1 ,2 ]
Li, Yongbing [3 ]
Yang, Zhiming [4 ]
Liu, Jianming [5 ]
机构
[1] Sun Yat Sen Univ, Sch Earth Sci & Engn, Guangzhou 510275, Peoples R China
[2] Southern Marine Sci & Engn Guangdong Lab Zhuhai, Zhuhai 519080, Peoples R China
[3] Univ Chinese Acad Sci, Key Lab Computat Geodynam, Beijing 100049, Peoples R China
[4] Chinese Acad Geol Sci, Inst Geol, Beijing 100037, Peoples R China
[5] Chinese Acad Sci, Inst Geol & Geophys, Key Lab Mineral Resources, Beijing 100029, Peoples R China
关键词
Fe isotope fractionation; FeS; Silicates; Phase transition; First-principles calculations; POST-PEROVSKITE PHASE; HIGH-PRESSURE; HIGH-TEMPERATURE; 1ST-PRINCIPLES CALCULATIONS; EQUILIBRIUM SILICON; INTERNAL STRUCTURE; STABLE-ISOTOPES; IRON-METEORITES; RAMAN-SPECTRA; AB-INITIO;
D O I
10.1016/j.gca.2022.10.042
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Iron is the most important component of the cores of terrestrial planets, and iron sulfide (FeS) is one of the preferred candidates present in these cores. FeS is also ubiquitous in Earth's crust, peridotites, and extraterrestrial samples. Knowledge of the phase stability of FeS and Fe isotope fractionation between FeS phases and mantle silicates is of great importance for understanding the interior of the Earth and terrestrial planets. In this study, first-principles methods were used to study the pressure-dependent phase stability of FeS and equilibrium Fe isotope fractionation in FeS, hexagonal close-packed (hcp) Fe, and mantle silicates at the pressure of Earth's interior. FeS underwent four phase transitions at 0 K. The first is the transition from FeS I to FeS II at 2.8 GPa, the second from FeS II to FeS III at 7.5 GPa, the third from FeS III to FeS VI at 74.2 GPa, and the fourth from FeS VI to FeS VII at 122.2 GPa. Apart from the fact that the transition from FeS I to FeS II causes negligible Fe isotope fractionation, other phase transitions can cause measurable Fe isotope fractionation at corresponding pressures along the geotherm. Fe isotopes exhibit measurable fractionation between FeS and mantle silicates under mantle pressure-temperature conditions. Each phase was more enriched in heavy Fe with increasing depth in the pressure range of 7.5-90 GPa. If the silicate mantle is enriched in heavy Fe relative to the core or Fe has negligible isotope fractionation between them under the core-mantle boundary (CMB) conditions of the Earth, the Fe2+/(Fe2++Mg) in (Fe2+, Mg)SiO3 post-perovskite is less than 50%. At the temperature-pressure conditions of Earth's core, equilibrium Fe isotope fractionation between hcp Fe and FeS VII can be neglected. FeS III is more likely to exist in the Martian core relative to FeS VI. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页码:38 / 50
页数:13
相关论文
共 50 条
  • [1] Planet Size Controls Fe Isotope Fractionation Between Mantle and Core
    Ni, Peng
    Shahar, Anat
    Badro, James
    Yang, Jing
    Bi, Wenli
    Zhao, Jiyong
    Hu, Michael Y.
    Alp, Esen E.
    GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (20)
  • [2] Fe isotope fractionation on FeS formation in ambient aqueous solution
    Butler, IB
    Archer, C
    Vance, D
    Oldroyd, A
    Rickard, D
    EARTH AND PLANETARY SCIENCE LETTERS, 2005, 236 (1-2) : 430 - 442
  • [3] Crystal chemical constraints on inter-mineral Fe isotope fractionation and implications for Fe isotope disequilibrium in San Carlos mantle xenoliths
    Macris, Catherine A.
    Manning, Craig E.
    Young, Edward D.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2015, 154 : 168 - 185
  • [4] Fe isotope fractionation in calcium carbonate
    Dideriksen, K
    Baker, JA
    Bizzarro, M
    Stipp, SLS
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2004, 68 (11) : A373 - A373
  • [5] Significance of the mantle Fe isotope variations
    Poitrasson, F.
    Delpech, G.
    Gregoire, A.
    Moine, B. N.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2007, 71 (15) : A799 - A799
  • [6] Iron isotope fractionation at the core–mantle boundary by thermodiffusion
    Charles E. Lesher
    Juliane Dannberg
    Gry H. Barfod
    Neil R. Bennett
    Justin J. G. Glessner
    Daniel J. Lacks
    James M. Brenan
    Nature Geoscience, 2020, 13 : 382 - 386
  • [7] Ab initio studies of Fe isotope fractionation in Fe sulfides
    Hill, P. S.
    Schauble, E. A.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2009, 73 (13) : A531 - A531
  • [8] Experimentally determined Si isotope fractionation between silicate and Fe metal and implications for Earth's core formation
    Shahar, Anat
    Ziegler, Karen
    Young, Edward D.
    Ricolleau, Angele
    Schauble, Edwin A.
    Fei, Yingwei
    EARTH AND PLANETARY SCIENCE LETTERS, 2009, 288 (1-2) : 228 - 234
  • [9] Iron isotope fractionation at the core-mantle boundary by thermodiffusion
    Lesher, Charles E.
    Dannberg, Juliane
    Barfod, Gry H.
    Bennett, Neil R.
    Glessner, Justin J. G.
    Lacks, Daniel J.
    Brenan, James M.
    NATURE GEOSCIENCE, 2020, 13 (05) : 382 - 386
  • [10] Fe Isotope Fractionation during Equilibration of Fe-Organic Complexes
    Morgan, Jennifer L. L.
    Wasylenki, Laura E.
    Nuester, Jochen
    Anbar, Ariel D.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (16) : 6095 - 6101