The Potential of Duplex Stainless Steel Processed by Laser Powder Bed Fusion for Biomedical Applications: A Review

被引:9
|
作者
Gatto, Maria Laura [1 ]
Santoni, Alberto [1 ]
Santecchia, Eleonora [1 ]
Spigarelli, Stefano [1 ]
Fiori, Fabrizio [2 ]
Mengucci, Paolo [3 ]
Cabibbo, Marcello [1 ]
机构
[1] Polytech Univ Marche, Dept Ind Engn & Math Sci, Via Brecce Bianche, I-60131 Ancona, Italy
[2] Univ Politecn Marche, Dept DISCO, Via Brecce Bianche 12, I-60131 Ancona, Italy
[3] Univ Politecn Marche, Dept SIMAU & UdR INSTM, Via Brecce Bianche 12, I-60131 Ancona, Italy
关键词
duplex stainless steel; laser powder bed fusion; microstructure; mechanical properties; corrosion resistance; magnetic behavior; biomedical applications; MECHANICAL-PROPERTIES; CORROSION BEHAVIOR; UNS S31803; RESISTANCE; IMPLANTS; DESIGN; SIZE;
D O I
10.3390/met13050949
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The austenitic stainless steels utilized in the production of osteosynthesis devices are susceptible to crevice corrosion. Several studies have compared the corrosive behavior of austenitic and duplex stainless steels (DSS), both of which are recognized as viable biomaterials for tissue engineering applications. All of the in vitro and in vivo studies on animals and clinical results reported to date indicate that austeno-ferritic duplex stainless steel can be recommended as a suitable alternative to ASTM F138 steel, since it is resistant to crevice corrosion in the human body and presents superior mechanical properties. The use of DSS for biomedical applications is still under discussion, mainly due to the lack of knowledge of its behavior in terms of device heating or induced movement when exposed to magnetic fields, a potentially harmful effect for the human body. As a breakthrough production technology, additive manufacturing (AM) has demonstrated significant benefits for the fabrication of metal devices with patient-specific geometry. Laser powder bed fusion has particularly been used to manufacture DSS-based components. A fine control of the processing conditions allows for an understanding of DSS microstructural evolution, which is essential for selecting processing parameters and estimating performance, including mechanical properties and corrosion resistance. Furthermore, scientific investigation is necessary for determining the relationships among material, process, and magnetic properties, in order to establish the underlying principles and critical responses. The purpose of this review is to highlight the key performances of DSS for biomedical applications and to point out the relevant role of advanced processing technologies such as additive manufacturing.
引用
收藏
页数:30
相关论文
共 50 条
  • [21] Microstructural characterization of 15-5PH stainless steel processed by laser powder-bed fusion
    Unti, L. F. Kultz
    Aota, L. S.
    Jardini, A. L.
    Tschiptschin, A. P.
    Sandim, H. R. Z.
    Jaegle, E. A.
    Zilnyk, K. D.
    MATERIALS CHARACTERIZATION, 2021, 181
  • [22] Machine learning for advancing laser powder bed fusion of stainless steel
    Abd-Elaziem, Walaa
    Elkatatny, Sally
    Sebaey, Tamer A.
    Darwish, Moustafa A.
    El-Baky, Marwa A. Abd
    Hamada, Atef
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 30 : 4986 - 5016
  • [23] Effects of Nb and Mo on the microstructure and properties of 420 stainless steel processed by laser-powder bed fusion
    Nath, Subrata Deb
    Clinning, Emma
    Gupta, Gautam
    Wuelfrath-Poirier, Vincent
    L'Esperance, Gilles
    Gulsoy, Ozkan
    Kearns, Martin
    Atre, Sundar, V
    ADDITIVE MANUFACTURING, 2019, 28 : 682 - 691
  • [24] Laser Powder Bed Fusion: tailoring the microstructure of alloys for biomedical applications
    Santecchia, E.
    Mengucci, P.
    Gatto, A.
    Bassoli, E.
    Denti, L.
    Rutkowski, B.
    Barucca, G.
    MATERIALS TODAY-PROCEEDINGS, 2019, 19 : 24 - 32
  • [25] Laser Powder Bed Fusion of Potential Superalloys: A Review
    Cobbinah, Prince Valentine
    Nzeukou, Rivel Armil
    Onawale, Omoyemi Temitope
    Matizamhuka, Wallace Rwisayi
    METALS, 2021, 11 (01) : 1 - 37
  • [26] Effect of laser power on defect, texture, and microstructure of a laser powder bed fusion processed 316L stainless steel
    Choo, Hahn
    Sham, Kin-Ling
    Bohling, John
    Ngo, Austin
    Xiao, Xianghui
    Ren, Yang
    Depond, Philip J.
    Matthews, Manyalibo J.
    Garlea, Elena
    MATERIALS & DESIGN, 2019, 164
  • [27] Beta Titanium Alloys Processed By Laser Powder Bed Fusion: A Review
    J. C. Colombo-Pulgarín
    C. A. Biffi
    M. Vedani
    D. Celentano
    A. Sánchez-Egea
    A. D. Boccardo
    J. -P. Ponthot
    Journal of Materials Engineering and Performance, 2021, 30 : 6365 - 6388
  • [28] Beta Titanium Alloys Processed By Laser Powder Bed Fusion: A Review
    Colombo-Pulgarin, J. C.
    Biffi, C. A.
    Vedani, M.
    Celentano, D.
    Sanchez-Egea, A.
    Boccardo, A. D.
    Ponthot, J. -P.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2021, 30 (09) : 6365 - 6388
  • [29] Post-Processing Effect on the Corrosion Resistance of Super Duplex Stainless Steel Produced by Laser Powder Bed Fusion
    Brytan, Zbigniew
    Dagnaw, Mengistu
    Bidulska, Jana
    Bidulsky, Robert
    Muhamad, Mohd Ridha
    MATERIALS, 2024, 17 (12)
  • [30] Process Parameter Optimization of 2507 Super Duplex Stainless Steel Additively Manufactured by the Laser Powder Bed Fusion Technique
    Mulhi, Ali
    Dehgahi, Shirin
    Waghmare, Prashant
    Qureshi, Ahmed J.
    METALS, 2023, 13 (04)