On Kato square root problem for a parabolic operator and applications

被引:0
|
作者
Mahdi, Achache [1 ,2 ]
机构
[1] Univ Aix Marseille, CPT, CNRS, Marseille, France
[2] Inst Math I2M, Marseille, France
关键词
Kato square root problem; Parabolic operator; Sesquilinear forms;
D O I
10.1007/s41808-023-00212-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Kato square root problem for the parabolic operator L on L-2(R,H) defined by (Lu)(t) = u(t) + A(t)u(t). Here, the time dependent operators A(t) are associated with (time dependent) sesquilinear forms on a Hilbert space H. We assume that these forms are measurable in t and have the same domain V. We prove the Kato square root property for L-1/2 and the estimate || L1/2u|| (2)(L)(R,H) ??u?(1/2)(H)(R,H)+?u?(2)(L)(R,V). Our results are the most general ones on this topic.
引用
收藏
页码:535 / 547
页数:13
相关论文
共 50 条
  • [31] Resonances of the Square Root of the Pauli Operator
    Ito, Hiroshi T.
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2017, 53 (04) : 517 - 549
  • [32] On the square root of a positive selfadjoint operator
    Zoltán Sebestyén
    Zsigmond Tarcsay
    Periodica Mathematica Hungarica, 2017, 75 : 268 - 272
  • [33] On the square root of a positive selfadjoint operator
    Sebestyen, Zoltan
    Tarcsay, Zsigmond
    PERIODICA MATHEMATICA HUNGARICA, 2017, 75 (02) : 268 - 272
  • [34] The Commutator of the Kato Square Root for Second Order Elliptic Operators on Rn
    Yan Ping CHEN
    Yong DING
    Steve HOFMANN
    Acta Mathematica Sinica,English Series, 2016, 32 (10) : 1121 - 1144
  • [35] The commutator of the Kato square root for second order elliptic operators on ℝn
    Yan Ping Chen
    Yong Ding
    Steve Hofmann
    Acta Mathematica Sinica, English Series, 2016, 32 : 1121 - 1144
  • [36] ON SQUARE ROOT OF STURM-LIUVILLE OPERATOR
    Shaldanbayev, A. Sh.
    Shaldanbayeva, A. A.
    Shaldanbay, B. A.
    NEWS OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN-SERIES PHYSICO-MATHEMATICAL, 2019, 3 (325): : 97 - 113
  • [37] Analytic representation of the square-root operator
    Gill, TL
    Zachary, WW
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (11): : 2479 - 2496
  • [38] Extrapolation of Carleson measures and the analyticity of Kato's square-root operators
    Auscher, P
    Hofmann, S
    Lewis, JL
    Tchamitchian, P
    ACTA MATHEMATICA, 2001, 187 (02) : 161 - 190
  • [39] The commutator of the Kato square root for second order elliptic operators on a"e n
    Chen, Yan Ping
    Ding, Yong
    Hofmann, Steve
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (10) : 1121 - 1144
  • [40] The Commutator of the Kato Square Root for Second Order Elliptic Operators on R~n
    Yan Ping CHEN
    Yong DING
    Steve HOFMANN
    Acta Mathematica Sinica, 2016, 32 (10) : 1121 - 1144