On Kato square root problem for a parabolic operator and applications

被引:0
|
作者
Mahdi, Achache [1 ,2 ]
机构
[1] Univ Aix Marseille, CPT, CNRS, Marseille, France
[2] Inst Math I2M, Marseille, France
关键词
Kato square root problem; Parabolic operator; Sesquilinear forms;
D O I
10.1007/s41808-023-00212-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Kato square root problem for the parabolic operator L on L-2(R,H) defined by (Lu)(t) = u(t) + A(t)u(t). Here, the time dependent operators A(t) are associated with (time dependent) sesquilinear forms on a Hilbert space H. We assume that these forms are measurable in t and have the same domain V. We prove the Kato square root property for L-1/2 and the estimate || L1/2u|| (2)(L)(R,H) ??u?(1/2)(H)(R,H)+?u?(2)(L)(R,V). Our results are the most general ones on this topic.
引用
收藏
页码:535 / 547
页数:13
相关论文
共 50 条