Insights into the Genomic and Phenotypic Landscape of the Oleaginous Yeast Yarrowia lipolytica

被引:3
|
作者
Bigey, Frederic [1 ]
Pasteur, Emilie [2 ]
Polomska, Xymena [3 ]
Thomas, Stephane [2 ]
Crutz-Le Coq, Anne-Marie [2 ,4 ]
Devillers, Hugo [1 ,2 ]
Neuveglise, Cecile [1 ,2 ]
机构
[1] Univ Montpellier, Inst Agro, INRAE, SPO, F-34060 Montpellier, France
[2] Univ Paris Saclay, Micalis, INRAE, AgroParisTech, F-78350 Jouy En Josas, France
[3] Wroclaw Univ Environm & Life Sci WUELS, Dept Biotechnol & Food Microbiol, PL-50375 Wroclaw, Poland
[4] INRAE, IJPB, F-78000 Versailles, France
关键词
population genomics; phenotype; diversity; killer toxin; transposable elements; POPULATION GENOMICS; EVOLUTION; ACID; RETROTRANSPOSON; BIOSYNTHESIS; METABOLISM; GENETICS; GLUCOSE; TOOL;
D O I
10.3390/jof9010076
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Although Yarrowia lipolytica is a model yeast for the study of lipid metabolism, its diversity is poorly known, as studies generally consider only a few standard laboratory strains. To extend our knowledge of this biotechnological workhorse, we investigated the genomic and phenotypic diversity of 56 natural isolates. Y. lipolytica is classified into five clades with no correlation between clade membership and geographic or ecological origin. A low genetic diversity (pi = 0.0017) and a pan-genome (6528 genes) barely different from the core genome (6315 genes) suggest Y. lipolytica is a recently evolving species. Large segmental duplications were detected, totaling 892 genes. With three new LTR-retrotransposons of the Gypsy family (Tyl4, Tyl9, and Tyl10), the transposable element content of genomes appeared diversified but still low (from 0.36% to 3.62%). We quantified 34 traits with substantial phenotypic diversity, but genome-wide association studies failed to evidence any associations. Instead, we investigated known genes and found four mutational events leading to XPR2 protease inactivation. Regarding lipid metabolism, most high-impact mutations were found in family-belonging genes, such as ALK or LIP, and therefore had a low phenotypic impact, suggesting that the huge diversity of lipid synthesis and accumulation is multifactorial or due to complex regulations.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Metabolic engineering for ricinoleic acid production in the oleaginous yeast Yarrowia lipolytica
    A. Beopoulos
    J. Verbeke
    F. Bordes
    M. Guicherd
    M. Bressy
    A. Marty
    Jean-Marc Nicaud
    Applied Microbiology and Biotechnology, 2014, 98 : 251 - 262
  • [22] Engineering the oleaginous yeast Yarrowia lipolytica to produce the aroma compound β-ionone
    Czajka, Jeffrey J.
    Nathenson, Justin A.
    Benites, Veronica T.
    Baidoo, Edward E. K.
    Cheng, Qianshun
    Wang, Yechun
    Tang, Yinjie J.
    MICROBIAL CELL FACTORIES, 2018, 17
  • [23] Metabolic engineering for ricinoleic acid production in the oleaginous yeast Yarrowia lipolytica
    Beopoulos, A.
    Verbeke, J.
    Bordes, F.
    Guicherd, M.
    Bressy, M.
    Marty, A.
    Nicaud, Jean-Marc
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2014, 98 (01) : 251 - 262
  • [24] Sustainable production of FAEE biodiesel using the oleaginous yeast Yarrowia lipolytica
    Yu, Aiqun
    Zhao, Yu
    Li, Jian
    Li, Shenglong
    Pang, Yaru
    Zhao, Yakun
    Zhang, Cuiying
    Xiao, Dongguang
    MICROBIOLOGYOPEN, 2020, 9 (07):
  • [25] Approaches to improve the lipid synthesis of oleaginous yeast Yarrowia lipolytica: A review
    Bao, Wenjun
    Li, Zifu
    Wang, Xuemei
    Gao, Ruiling
    Zhou, Xiaoqin
    Cheng, Shikun
    Men, Yu
    Zheng, Lei
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 149
  • [26] Genome Sequence of the Oleaginous Yeast Yarrowia lipolytica H222
    Devillers, Hugo
    Neuveglise, Cecile
    MICROBIOLOGY RESOURCE ANNOUNCEMENTS, 2019, 8 (04):
  • [27] Engineering the oleaginous yeast Yarrowia lipolytica to produce the aroma compound β-ionone
    Jeffrey J. Czajka
    Justin A. Nathenson
    Veronica T. Benites
    Edward E. K. Baidoo
    Qianshun Cheng
    Yechun Wang
    Yinjie J. Tang
    Microbial Cell Factories, 17
  • [28] Yarrowia lipolytica: Safety assessment of an oleaginous yeast with a great industrial potential
    Groenewald, Marizeth
    Boekhout, Teun
    Neuveglise, Cecile
    Gaillardin, Claude
    van Dijck, Piet W. M.
    Wyss, Markus
    CRITICAL REVIEWS IN MICROBIOLOGY, 2014, 40 (03) : 187 - 206
  • [29] Reconstruction and In Silico Analysis of Metabolic Network for an Oleaginous Yeast, Yarrowia lipolytica
    Pan, Pengcheng
    Hua, Qiang
    PLOS ONE, 2012, 7 (12):
  • [30] Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica
    Fontanille, Pierre
    Kumar, Vinod
    Christophe, Gwendoline
    Nouaille, Regis
    Larroche, Christian
    BIORESOURCE TECHNOLOGY, 2012, 114 : 443 - 449