VOLATILITY SMILE INTERPOLATION WITH RADIAL BASIS FUNCTIONS

被引:0
|
作者
Donfack, Hermann Azemtsa [1 ]
Soh, Celestin Wafo [1 ,2 ]
Kotze, Antonie [1 ]
机构
[1] Univ Johannesburg, Dept Finance & Investment Management, Johannesburg, Gauteng, South Africa
[2] Jackson State Univ, Coll Sci Engn & Technol, Dept Math & Stat Sci, Jackson, MS 39217 USA
关键词
RBF; radial basis function; volatility; risk-neutral density; local volatility; BENCHMARKING PROJECT; SURFACES; BENCHOP;
D O I
10.1142/S0219024922500303
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
The Radial Basis Functions (RBF) interpolation is a popular approximation technique used to smooth scattered data in various dimensions. This study uses RBF interpolation to interpolate the volatility skew of the S & P500 index options. The interpolated skews are used to construct the risk-neutral densities of the index and its local volatility surface. The RBF interpolation is contrasted throughout the study with the cubic spline interpolation. An analysis of the densities and the local volatility shows that RBF are an effective and practical tool for interpolating the implied volatility surface.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Constructive approximate interpolation for real functions by the radial basis function
    Han, Xuli
    Amara, Camara
    Liu, Xinru
    2007 INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE & TECHNOLOGY, PROCEEDINGS, 2007, : 342 - 345
  • [33] Extended Hermite Radial Basis Functions for Sparse Contours Interpolation
    Zhong, Deyun
    Wang, Liguan
    Bi, Lin
    IEEE ACCESS, 2020, 8 : 58752 - 58762
  • [34] Pointwise approximation with quasi-interpolation by radial basis functions
    Buhmann, Martin D.
    Dai, Feng
    JOURNAL OF APPROXIMATION THEORY, 2015, 192 : 156 - 192
  • [35] Quasi-interpolation for data fitting by the radial basis functions
    Han, Xuli
    Hou, Muzhou
    ADVANCES IN GEOMETRIC MODELING AND PROCESSING, 2008, 4975 : 541 - 547
  • [36] ON QUASI-INTERPOLATION BY RADIAL BASIS FUNCTIONS WITH SCATTERED CENTERS
    BUHMANN, MD
    DYN, N
    LEVIN, D
    CONSTRUCTIVE APPROXIMATION, 1995, 11 (02) : 239 - 254
  • [37] A Domain Decomposition Multilevel Preconditioner for Interpolation with Radial Basis Functions
    Haase, Gundolf
    Martin, Dirk
    Schiffmann, Patrick
    Offner, Guenter
    LARGE-SCALE SCIENTIFIC COMPUTING, LSSC 2017, 2018, 10665 : 499 - 506
  • [38] INTERPOLATION BY PIECEWISE-LINEAR RADIAL BASIS FUNCTIONS .2.
    LIGHT, WA
    CHENEY, EW
    JOURNAL OF APPROXIMATION THEORY, 1991, 64 (01) : 38 - 54
  • [39] Curvature-Based Characterization of Radial Basis Functions: Application to Interpolation
    Heidari, Mohammad
    Mohammadi, Maryam
    De Marchi, Stefano
    MATHEMATICAL MODELLING AND ANALYSIS, 2023, 28 (03) : 415 - 433
  • [40] Improved error bounds for scattered data interpolation by radial basis functions
    Schaback, R
    MATHEMATICS OF COMPUTATION, 1999, 68 (225) : 201 - 216